【树】104. 二叉树的最大深度 & 111. 二叉树的最小深度 & 559. N 叉树的最大深度 & 110. 平衡二叉树

104. 二叉树的最大深度

题目

104. 二叉树的最大深度

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:
给定二叉树 [3,9,20,null,null,15,7],
3
/
9 20
/
15 7
返回它的最大深度 3 。

解法

方法一:深度优先搜索

如果我们知道了左子树和右子树的最大深度 l 和 r,那么该二叉树的最大深度即为
max(l,r)+1

而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用「深度优先搜索」的方法来计算二叉树的最大深度。具体而言,在计算当前二叉树的最大深度时,可以先递归计算出其左子树和右子树的最大深度,然后在 O(1)时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。
在这里插入图片描述

public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
    }

方法二:广度优先搜索

我们也可以用「广度优先搜索」的方法来解决这道题目,但我们需要对其进行一些修改,此时我们广度优先搜索的队列里存放的是「当前层的所有节点」。

每次拓展下一层的时候,不同于广度优先搜索的每次只从队列里拿出一个节点,我们需要将队列里的所有节点都拿出来进行拓展,这样能保证每次拓展完的时候队列里存放的是当前层的所有节点,即我们是一层一层地进行拓展,最后我们用一个变量ans 来维护拓展的次数,该二叉树的最大深度即为ans。

public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        int ans = 0;
        while (!queue.isEmpty()) {
            int size = queue.size();
            // 把这一层的都依次取出
            while (size-- > 0) {
                TreeNode node = queue.remove();
                if (node.left != null) {
                    queue.add(node.left);
                }
                if (node.right != null) {
                    queue.add(node.right);
                }
            }
            ans++;
        }
        return ans;
    }

111. 二叉树的最小深度

题目

111. 二叉树的最小深度

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明:叶子节点是指没有子节点的节点。
在这里插入图片描述
输入:root = [3,9,20,null,null,15,7]
输出:2
示例 2:

输入:root = [2,null,3,null,4,null,5,null,6]
输出:5

解法

深度优先搜索

叶子节点的定义是左孩子和右孩子都为 null 时叫做叶子节点
当 root 节点左右孩子都为空时,返回 1
当 root 节点左右孩子有一个为空时,返回不为空的孩子节点的深度
当 root 节点左右孩子都不为空时,返回左右孩子较小深度的节点值

public int minDepth(TreeNode root) {
        if(root == null) return 0;
        //这道题递归条件里分为三种情况
        //1.左孩子和有孩子都为空的情况,说明到达了叶子节点,直接返回1即可
        if(root.left == null && root.right == null) return 1;
        //2.如果左孩子和由孩子其中一个为空,那么需要返回比较大的那个孩子的深度        
        int m1 = minDepth(root.left);
        int m2 = minDepth(root.right);
        //这里其中一个节点为空,说明m1和m2有一个必然为0,所以可以返回m1 + m2 + 1;
        if(root.left == null || root.right == null) return m1 + m2 + 1;
        
        //3.最后一种情况,也就是左右孩子都不为空,返回最小深度+1即可
        return Math.min(m1,m2) + 1; 
    }

广度优先搜索

同样,我们可以想到使用广度优先搜索的方法,遍历整棵树。

当我们找到一个叶子节点时,直接返回这个叶子节点的深度。广度优先搜索的性质保证了最先搜索到的叶子节点的深度一定最小。

public class Solution {

    class QueueNode {
        TreeNode node;
        int depth;
        public QueueNode(TreeNode node, int depth) {
            this.node = node;
            this.depth = depth;
        }
    }

    public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        Queue<QueueNode> queue = new LinkedList<>();
        queue.add(new QueueNode(root, 1));
        while (!queue.isEmpty()) {
            QueueNode nodeDepth = queue.remove();
            TreeNode node = nodeDepth.node;
            int depth = nodeDepth.depth;
            if (node.left == null && node.right == null) {
                return depth;
            }
            if (node.left != null) {
                queue.add(new QueueNode(node.left, depth + 1));
            }
            if (node.right != null) {
                queue.add(new QueueNode(node.right, depth + 1));
            }
        }
        return 0;
    }
}

559. N 叉树的最大深度

题目

559. N 叉树的最大深度

给定一个 N 叉树,找到其最大深度。

最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。

N 叉树输入按层序遍历序列化表示,每组子节点由空值分隔(请参见示例)

在这里插入图片描述
输入:root = [1,null,3,2,4,null,5,6]
输出:3

解答

深度优先搜索

解决这个问题的最直观方法就是递归。
递归去求每个子节点的最大深度,返回其中最大的子树深度+1
不同的是,二叉树中求的是左子树和右子树的最大值。

public int maxDepth(Node root) {
        if (root == null) {
            return 0;
        }
        // 如果没有子树 则为1
        if (root.children.isEmpty()) {
            return 1;
        }
        // 递归去求每个子节点的最大深度
        List<Integer> heights = new ArrayList<>();
        for (Node item : root.children) {
            heights.add(maxDepth(item));
        }
        // 返回其中最大的深度+1
        return Collections.max(heights) + 1;
    }

迭代

我们也可以用「广度优先搜索」的方法来解决这道题目,但我们需要对其进行一些修改,此时我们广度优先搜索的队列里存放的是「当前层的所有节点」。

每次拓展下一层的时候,不同于广度优先搜索的每次只从队列里拿出一个节点,我们需要将队列里的所有节点都拿出来进行拓展,这样能保证每次拓展完的时候队列里存放的是当前层的所有节点,即我们是一层一层地进行拓展,最后我们用一个变量ans 来维护拓展的次数,该二叉树的最大深度即为ans。

public int maxDepth(Node root) {
    if (root == null) {
        return 0;
    }
    Queue<Node> queue = new LinkedList<>();
    queue.add(root);
    int depth = 0;
    while (!queue.isEmpty()) {
        int n = queue.size();
        depth++;
        // 每一层的所有节点都遍历一遍
        while (n-- != 0) {
        	// 所有子节点都入队
            for (Node item : queue.remove().children) {
                queue.add(item);
            }
        }
    }
    return depth;
}

110. 平衡二叉树

题目

110. 平衡二叉树

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:

一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
在这里插入图片描述
输入:root = [1,2,2,3,3,null,null,4,4]
输出:false

解法

从底至顶(提前阻断)

此方法为本题的最优解法,但“从底至顶”的思路不易第一时间想到。

思路是对二叉树做先序遍历,从底至顶返回子树最大高度,若判定某子树不是平衡树则 “剪枝” ,直接向上返回。

算法流程:

recur(root):

  • 递归返回值:

    • 当节点root 左 / 右子树的高度差 < 2:则返回以节点root为根节点的子树的最大高度,即节点 root 的左右子树中最大高度加 1( max(left, right) + 1 );
    • 当节点root 左 / 右子树的高度差 ≥2 :则返回 −1 ,代表 此子树不是平衡树 。
  • 递归终止条件:

    • 当越过叶子节点时,返回高度 0 ;
    • 当左(右)子树高度 left== -1 时,代表此子树的 左(右)子树 不是平衡树,因此直接返回 -1 ;
	public boolean isBalanced(TreeNode root) {
        return recur(root) != -1;
    }

    public int recur(TreeNode root) {
    	// 叶子节点高度为0
        if (root == null) {
            return 0;
        }
        // 如果不平衡则直接返回
        int leftHeight = recur(root.left);
        if (leftHeight == -1) {
            return -1;
        }
        int rightHeight = recur(root.right);
        if (rightHeight == -1) {
            return -1;
        }
        // 判断是否高度相差在2以内
        return Math.abs(leftHeight - rightHeight) < 2 ? Math.max(leftHeight, rightHeight) + 1 : -1;
    }

从顶至底(暴力法)

此方法容易想到,但会产生大量重复计算,时间复杂度较高。

思路是构造一个获取当前节点最大深度的方法 depth(root) ,通过比较此子树的左右子树的最大高度差abs(depth(root.left) - depth(root.right)),来判断此子树是否是二叉平衡树。若树的所有子树都平衡时,此树才平衡。

class Solution {
    public boolean isBalanced(TreeNode root) {
        if (root == null) return true;
        return Math.abs(depth(root.left) - depth(root.right)) <= 1 && isBalanced(root.left) && isBalanced(root.right);
    }

    private int depth(TreeNode root) {
        if (root == null) return 0;
        return Math.max(depth(root.left), depth(root.right)) + 1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值