滴水藏海NQZ
码龄10年
关注
提问 私信
  • 博客:53,681
    53,681
    总访问量
  • 114
    原创
  • 629,720
    排名
  • 44
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2014-07-15
博客简介:

qq_17721239的博客

查看详细资料
个人成就
  • 获得11次点赞
  • 内容获得15次评论
  • 获得132次收藏
创作历程
  • 1篇
    2021年
  • 98篇
    2020年
  • 15篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • Human Pose Estimation
    38篇
  • 常见面试题
    12篇
  • 设计模式
    7篇
  • SpringBoot
    10篇
  • CV
    21篇
  • torch7
    1篇
  • face detection
    6篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

D. 有界函数与无穷小的和是无穷小.pdf

发布资源 2024.01.03 ·
pdf

3D Human Pose and Shape -- Datasets: 总结

Human3.6M(http://vision.imar.ro/human3.6m/description.php) Human3.6M数据集是一个大规模的3D人体姿态估计户内数据集,包括多个演员的多个动作(行走,坐下,吃饭等等)。数据集的下载需要在官网注册,审核比较麻烦。数据集提供了:Poses/Scanner/Segments/TOF/Videos 种类的数据。 Pose:Poses_D2_Positions_S{}.tgz////Poses_D3_Angles_mono_S{}.tgz////P
原创
发布博客 2021.01.04 ·
811 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

(3D-HPE)Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape Estimation

Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape Estimation一个和Learning to estimate 3D human pose and shape from a single color image. In: CVPR (2018) 类似的工作。论文不是从RGB图片获得SMPL模型的参数,而是考虑中间监督,使用了human part segmentation,来回归参数。
原创
发布博客 2020.11.11 ·
578 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(3D-HPE)Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop

Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop (ICCV2019)github: https://seas.upenn.edu/˜nkolot/projects/spin人体三维姿态和体型估计,目前分为:基于模型(model-based)的和非基于模型的方法。而基于模型的姿态估计又分为基于优化的方法和基于回归的方法;基于优化的方法以迭代的方式将参数化人体模型(parametric...
原创
发布博客 2020.11.10 ·
1190 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(3D-HPE)Learning to Estimate 3D Human Pose and Shape from a Single Color Image

Learning to Estimate 3D Human Pose and Shape from a Single Color Image(CVPR2018)本文解决的问题是 从单幅彩色图片估计人的全身3D姿态和体型(pose & shape)在end-to-end网络中加入了SMPL模型。这样仅需很少的参数就可以得到详细的3D网格结果。文章也说明了,可以从2D的关节点和掩膜(masks)得到这些参数。这样就不需要很多的3D shape ground truth。同时在网络训练时候,从估计
原创
发布博客 2020.11.10 ·
414 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(3D-HPE) Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image(ECCV2016) 三维的姿态估计,忽略了人体的shape. 三位骨骼看似合理,但是可能拟合的shape是unnatural的。之前的工作,有的基...
原创
发布博客 2020.11.10 ·
1258 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

(3D-HPE)End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose (CVPR2018)参考:https://blog.csdn.net/sinat_28699719/article/details/93596169参考:https://zhuanlan.zhihu.com/p/2563580051、文章提出了一个端到端的方法从二维图像恢复三维人体模型的框架。2、现有的一些从单张图片恢复人体3D网格的方法专注于恢复人体3D关键点的坐标位置,然而这样做有如下不足之处:关
原创
发布博客 2020.11.06 ·
1388 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

2020-10-19 信息论基础知识

信息:信息是事物运动状态或存在方式的不确定性的描述。(Shannon信息)信息与消息:通信系统中传输的形式是消息;通信的实质是通过信息的传递,消除不确定性,获得信息。信号:把消息变换成适合信道传输的物理量,这种物理量就称为 信号。自信息:联合自信息:条件自信息:信源的数学模型与分类信源 信息测度:信息熵:信息输出各消息的自信息量的数学期望为信源的平均自信息量,即:又称为信源X的信息熵或 熵。这里的熵值的大小 取决于样本的概率分布(信源的概率矢量)。X代表研究.
原创
发布博客 2020.10.20 ·
1146 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

设计模式--模板模式

原创
发布博客 2020.09.13 ·
108 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

https加密通信的过程

HTTPS加密过程建议可以在电脑上安装一下Woreshark,这个软件方便直观的观察加密流程。https:在http(超文本传输协议)基础上提出的一种安全的http协议,因此可以称为安全的超文本传输协议。http协议直接放置在TCP协议之上,而https提出在http和TCP中间加上一层加密层。从发送端看,这一层负责把http的内容加密后送到下层的TCP,从接收方看,这一层负责将TCP送来的数据解密还原成http的内容。SSL(Secure Socket Layer):是Netscape公.
原创
发布博客 2020.08.23 ·
508 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

websocket

https://blog.csdn.net/SL_ideas/article/details/73648378?utm_medium=distribute.pc_aggpage_search_result.none-task-blog-2~all~first_rank_v2~rank_v25-1-73648378.nonecase&utm_term=websocket%E5%B1%9E%E4%BA%8E%E5%93%AA%E4%B8%80%E5%B1%82一、WebSocket 是什么?使用
原创
发布博客 2020.08.23 ·
142 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

各种排序的时间复杂度,空间复杂度,稳定性

排序算法 平均时间复杂度 最坏时间复杂度 最好时间复杂度 空间复杂度 稳定性 冒泡排序 O(n²) O(n²) O(n) O(1) 稳定 直接选择排序 O(n²) O(n²) O...
原创
发布博客 2020.08.21 ·
154 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

秒杀项目

1、秒杀流程1、首先前端商品界面显示秒杀倒计时,秒杀开始,显示秒杀按钮。输入验证码。2、用户在商品详情面点击按钮后验证码和用户id校验。 验证商品id和秒杀唯一标志是否合法(避免暴露秒杀地址) 判断秒杀时间(判断秒杀开始和结束时间) 判断商品是否抢光。redis中的库存>0 ? 判断用户是否已经秒杀过该商品 (判断redis中的key是否存在,用户秒杀后会在redis中设置一个展位的key来标志用户已经秒杀过) 3、判断当前系统流量是否超过阈值。通过redis的lis..
原创
发布博客 2020.10.14 ·
424 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

ConcurrentHashMap 1.7 和 1.8 的区别

1、锁结构:1.7采用的是segment + HashEntry数组实现的。Segment是Reentrant的子类,其内部维护了一个Entry数组,其结构和HashMap中的Entry数组是一样的,所以说Segment其实是一个锁,可以锁住一段哈希表结构。而ConcurrentHashMap中维护了一个Segment数组,所以是基于分段锁实现的。 而JDK1.8中,ConcurrentHashMap摒弃了Segment,采用synchronized+CAS+红黑树来实现的。锁的力度也从段锁缩小为结点锁。.
原创
发布博客 2020.10.14 ·
1384 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

HashMap的实现原理

HashMap的主干是Entry数组。Entry是HashMap的一个静态内部类,包含一个键值对,和一个指向下一个Entry的引用。总结:HashMap是数组+链表的结构。数组是HashMap的主体,链表解决Hash冲突。如果当前数组的位置不含链表,那么查找和添加等操作很快,仅需要一次寻址。若定位的位置包含链表,对于添加操作,遍历链表,存在即覆盖,否则新增;对于查找,仍需要遍历链表,然后通过key对象的equals方法逐一比较。所以HashMap中链表出现越少,性能越好。它有几个重要的字..
原创
发布博客 2020.10.14 ·
171 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

redis的使用场景

String 比如封锁某个IPHash 存取用户信息。不用String原因是,string反序列化代价大。List 实现最新消息的排行,还可以利用list的push命令,将任务存在list集合,利用pop取出任务。模拟消息队列。Set 可以自动排重,微博中每个人的好友。求共同好友,求交集即可。Zset 商品详情的综合排名。...
原创
发布博客 2020.10.14 ·
87 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SpringMVC的工作流程

https://blog.csdn.net/floating_dreaming/article/details/890892141、用户发送请求到DispatcherServlet(前端控制器)该控制器会过滤出哪些请求可以访问Servlet、哪些不能访问。2、DispatcherServlet收到请求后调用HandlerMapper处理器映射器。通过HandlerMapping完成url到controller映射的组件,简单来说,就是将在springmvc.xml中配置的或者注解的url与对应...
原创
发布博客 2020.10.14 ·
91 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SpringMVC 如何解决Post请求乱码问题,get请求乱码问题

使用springmvc的过滤器 在项目的web.xml文件上面添加一个过滤器<filter> <filter-name>CharacterEncodingFilter</filter-name> <filter-class>org.springframework.web.filter.CharacterEncodingFilter</filter-class> <init-param> <
原创
发布博客 2020.10.14 ·
101 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spring支持的事务传播属性

spring在TransactionDefinition接口中定义了七个事务传播行为: propagation_requierd:如果当前没有事务,就新建一个事务,如果已存在一个事务中,加入到这个事务中,这是最常见的选择。 propagation_required_new:新建事务,如果当前存在事务,把当前事务挂起。 propagation_supports:支持当前事务,如果没有当前事务,就以非事务方法执行。 propagation_mandatory:使用当前事务,如果没有当前事
原创
发布博客 2020.10.14 ·
167 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Spring的循环注入&&三级缓存(二)

三级缓存 for 循环注入。Spring管理的对象叫做BeanBean的生命周期构造AService对应的bean的过程:1.扫描类--->BeanDefinition2.aService = new AService(); //原始对象--->1ambda表达式-->三级缓存3.aService填充属性b---->BService的Bean4.Aware,init5.BeanPostProcessor:对前面所生成的对象进行加工 进行AOP
原创
发布博客 2020.10.14 ·
112 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多