(3D-HPE)Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop

Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop (ICCV2019)

github:   https://seas.upenn.edu/˜nkolot/projects/spin
 


人体三维姿态和体型估计,目前分为:基于模型(model-based)的和非基于模型的方法。而基于模型的姿态估计又分为基于优化的方法和基于回归的方法;

基于优化的方法以迭代的方式将参数化人体模型(parametric body model)拟合到二维观测中,从而获得精确地图片-模型的对齐;但是这总方法通常比较慢,且对初始化敏感。

基于回归的方法通常使用深度网络直接估计模型的参数,提供合理的但是不是像素级别的精度。通常需要大量的监督。

本文工作将这两方面综合起来。一个从直接从网络得到的合理回顾估计可以初始化迭代优化,是的优化更快更加精确。同时一个像素的精度基于作为网络一个很好的监督。

  SPIN

本文提出的网络的一个特性是他是一个self_improving的过程。在早期的训练阶段,网络的输出结果接近于平均位姿,意味着迭代拟合容易出现误差。当随着迭代拟合模型向网络提供更多的监督,它将学会生成更有意义的形状,也将导致优化更准确的模型拟合。

同时网络可以不需要三维监督,因为三维监督在优化模块就已经实现了。同时模型提供了精确地3D监督,以模型参数的形式而不是 2D的投影


SPIN:

input image通过图片得到 人体参数\Theta_{reg}。这里不是使用的2D投影损失。而是使用回归参数来初始化优化程序(SMPLify)。如果从平均姿态开始优化,速度会很慢。\Theta _{opt}=\left \{ \theta_{opt},\beta _{opt} \right \}代表迭代拟合模块得到的参数。

产生的新的M_{opt}=M(\theta _{opt},\beta _{opt}) 投影关节点J_{opt}。得到这些优化好的参数,我们可以在参数和网格层面 监督训练回归网络:

在参数层面:L_{3D}=\left \| \Theta _{reg}-\Theta _{opt} \right \|  and/or 在网格层面:L_M=\left \| M_{reg}-M_{opt} \right \|


补充细节:

SMPLify可以得到很精确的结果,但是在某些情况下会得到不好的效果。导致训练不稳定,降低性能。。我们使用一个标准来拒绝这些结果的监督。在实验中,基于关节重投影误差的简单阈值设定取得了很好的效果。对于拟合不合格的图像,我们只对关节处重投影损失的回归网络进行监督。另外,为了避免形状参数的不可信值的训练,当SMPLify返回的形状值超出这个范围时,我们只对参数\beta进行管理,简单的L2损失,即将其推至平均值形状。已从2D关键点回归的姿态来初始化SMPLify。同时每一个batch优化SMPLify总共50次迭代。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值