使用存储过程非常慢,但是执行SQL很快问题分析

问题一:存储过程放在查询分析器中执行,大概耗时5秒左右即可成功执行,但是在网站中执行却会超时

1.    将该存储过程放到查询分析器中执行,大概耗时5秒左右即可成功执行,但是在网站中执行却会超时;

2.       经查阅资料,这里存储过程的执行计划是被缓存了,参数不同,还是按照老的执行计划查询,效率也会不同

3.       解决办法:

在存储过程的定义上,加上 WITH  RECOMPILE ,这样针对不同的类型查询,可以强制重新编译执行过程

这样每次执行存储过程的时候就会重新分析执行计划,提高效率;

 

问题二:直接在查询分析器中执行存储过程很慢,但是把存储过程中的内容拿出来执行很快

  1. 原因:存储过程的参数嗅探

2.      解决办法:

把存储过程的参数赋值给了存储过程中自定义的变量,整个存储过程中使用这个变量来代替参数,并且在参数赋值的地方加上OPTION (OPTIMIZE FOR UNKNOWN)

经过测试,存储过程执行时间和sql单独拿出执行时间一致;

Hive是一个基于Hadoop的数据仓库工具,它的主要特点是能够对大规模数据进行高效地处理和分析。然而,与传统的关系型数据库相比,Hive的执行速度可能会变。 造成Hive使用JDBC调用时的原因可能有以下几点: 1. 数据存储和处理方式不同:Hive将数据存储在Hadoop集群的分布式文件系统中,而关系型数据库则使用表结构进行存储。这意味着Hive需要在查询之前将查询转化为MapReduce任务,而这个转化过程可能会导致额外的开销和延迟。 2. 数据转化和序列化:Hive在执行查询时需要将查询语句转化为MapReduce任务,并对数据进行序列化和反序列化。这些过程都会消耗一定的时间和计算资源,从而降低了执行速度。 3. 数据规模的影响:Hive通常用于处理大规模的数据集,而关系型数据库一般更适合小规模的数据查询。因此,在处理大规模数据时,Hive的执行速度相对较,而关系型数据库则能够更快地执行查询。 除了上述因素外,还有一些其他的影响因素可能导致Hive在使用JDBC调用时变得。例如,网络传输延迟、数据压缩和解压缩等方面的开销都可能对执行速度产生影响。 总之,Hive相对于关系型数据库而言,在使用JDBC调用时可能会变,主要是因为数据存储和处理方式不同、数据转化和序列化过程以及大规模数据对执行速度的影响。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值