13_Pandas字符串的替换和空白处删除等方法

本文详细介绍Pandas库中处理字符串的方法,包括替换、空白删除及大小写转换等实用技巧,适用于DataFrame列和Series对象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

13_Pandas字符串的替换和空白处删除等方法

在pandas中,准备了处理字符串的方法,以便共同处理pandas.DataFrame的列和行(= pandas.Series)的字符串。

以下的方法与标准Python字符串(str类型对象)的方法相同。

  • 替换
    • str.replace():替换字符串
  • 空白削除
    • str.strip():删除左右两侧的空白(开始/结束)
    • str.lstrip():删除左侧空白
    • str.rstrip():删除右侧空白
  • 大小写変换
    • str.lower():转换为小写
    • str.upper():转换为大写
    • str.capitalize():将第一个字母转换为大写,将其他字母转换为小写
    • str.title():将单词的首字母转换为大写,其余转换为小写
      将描述每个示例。

有关使用字符串方法的其他方法,请参见以下文章。

替换

str.replace():替换字符串

import pandas as pd

s = pd.Series([' a-a-x ', ' b-x-b ', ' x-c-c '])
print(s)
# 0     a-a-x 
# 1     b-x-b 
# 2     x-c-c 
# dtype: object

s_new = s.str.replace('x', 'z')
print(s_new)
# 0     a-a-z 
# 1     b-z-b 
# 2     z-c-c 
# dtype: object

要更新(替换)pandas.DataFrame的列,请将其替换为原始列。与其他方法相同。

df = pd.DataFrame([[' a-a-x-1 ', ' a-a-x-2 '],
                   [' b-x-b-1 ', ' b-x-b-2 '],
                   [' x-c-c-1 ', ' x-c-c-2 ']],
                  columns=['col1', 'col2'])
print(df)
#         col1       col2
# 0   a-a-x-1    a-a-x-2 
# 1   b-x-b-1    b-x-b-2 
# 2   x-c-c-1    x-c-c-2 

df['col1'] = df['col1'].str.replace('x', 'z')
print(df)
#         col1       col2
# 0   a-a-z-1    a-a-x-2 
# 1   b-z-b-1    b-x-b-2 
# 2   z-c-c-1    x-c-c-2 

空白削除

str.strip():删除左右两侧的空白(开始/结束)

s_new = s.str.strip()
print(s_new)
# 0    a-a-x
# 1    b-x-b
# 2    x-c-c
# dtype: object

也可以指定要删除的字符作为参数。指定字符串中包含的字符将被删除。这同样适用于str.lstrip()和str.rstrip()。

s_new = s.str.strip(' x')
print(s_new)
# 0     a-a-
# 1    b-x-b
# 2     -c-c
# dtype: object

对于pandas.DataFrame。与str.replace()相同。

df['col1'] = df['col1'].str.strip()
print(df)
#       col1       col2
# 0  a-a-z-1   a-a-x-2 
# 1  b-z-b-1   b-x-b-2 
# 2  z-c-c-1   x-c-c-2 

str.lstrip():删除左侧空白

s_new = s.str.lstrip()
print(s_new)
# 0    a-a-x 
# 1    b-x-b 
# 2    x-c-c 
# dtype: object

str.rstrip():删除右侧空白

s_new = s.str.rstrip()
print(s_new)
# 0     a-a-x
# 1     b-x-b
# 2     x-c-c
# dtype: object

大小写変换

以下pandas.Series为例。

s = pd.Series(['Hello World', 'hello world', 'HELLO WORLD'])
print(s)
# 0    Hello World
# 1    hello world
# 2    HELLO WORLD
# dtype: object

pandas.DataFrame同样适用该方法。

str.lower():转换为小写

s_new = s.str.lower()
print(s_new)
# 0    hello world
# 1    hello world
# 2    hello world
# dtype: object

str.upper():转换为大写

s_new = s.str.upper()
print(s_new)
# 0    HELLO WORLD
# 1    HELLO WORLD
# 2    HELLO WORLD
# dtype: object

str.capitalize():将第一个字母转换为大写,将其他字母转换为小写

s_new = s.str.capitalize()
print(s_new)
# 0    Hello world
# 1    Hello world
# 2    Hello world
# dtype: object

str.title():将单词的首字母转换为大写,其余转换为小写

s_new = s.str.title()
print(s_new)
# 0    Hello World
# 1    Hello World
# 2    Hello World
# dtype: object
<think>好的,我现在需要帮用户解决如何在Pandas DataFrame中处理列名的问题。用户的要求是定义一个字符串处理函数,然后应用到DataFrame的列名上,实现删除首尾空格、替换特定子串、替换空格为下划线、移除括号并转换为小写。 首先,我需要回忆一下用户提到的几个步骤:处理字符串的多个操作,包括strip、替换子串、替换空格为下划线、移除括号,最后转小写。然后,如何将这些步骤整合成一个函数,再应用到DataFrame的列名上。 首先,处理字符串的函数。用户提到要删除首尾空格,这应该用Python的strip()方法替换特定子串,比如用户可能想替换某些固定的字符串,比如将"old"替换成"new",但用户没有具体说明替换哪个子串,所以可能需要让函数参数化,允许传入需要替换的字典或者特定参数。不过根据问题描述,用户可能是指替换特定的某些子串,比如例子中的.replace()方法。但用户的需求里没有具体说明替换哪个子串,所以可能需要将替换特定子串作为一个可选步骤,或者用户可能希望函数能够接受一个替换字典,比如将多个子串替换为目标字符串。不过根据用户的问题,可能他需要的是一个通用的函数,可以处理这些步骤,比如先strip,然后替换空格为下划线,移除括号,然后转小写。可能需要明确每个步骤的顺序。 比如,处理流程应该是:首先删除首尾空格,然后替换特定子串(比如用户提到的.replace()方法),然后替换空格为下划线,移除括号,最后转小写。但用户提到的替换特定子串可能是指比如将某些特定的字符或字符串替换掉,比如括号或者其他符号。但用户的问题中可能具体需要替换的是空格为下划线,而移除括号则是另一个步骤。比如,假设替换空格为下划线,同时替换其他特定子串,如可能存在的某些关键词。 另外,用户提到“替换特定子串”,这里可能需要明确。比如,用户是否有特定的子串需要替换,比如将"data_"替换成"",或者其他的。但用户的问题中没有具体说明,所以可能需要假设用户希望将某个特定的子串替换为另一个,比如将空格替换为下划线,而移除括号可能需要先处理。或者可能用户希望先处理掉括号,比如用replace方法替换掉'('')'为空字符,然后再处理其他部分。 接下来,我需要将这些步骤整合成一个函数。比如,定义一个函数clean_column_name,接收列名字符串,然后按顺序处理: 1. 使用strip()去除首尾空格。 2. 使用replace()替换特定子串,比如将空格替换为下划线。 3. 移除括号,可能是用replace将'('')'替换为空。 4. 转换为小写。 但需要确认步骤的顺序是否正确。比如,是否应该先替换空格,再处理括号,或者先处理其他替换?比如,如果替换空格为下划线是在其他替换之后,可能更合理。或者是否有多个替换步骤,比如用户可能需要替换多个不同的子串,例如除了替换空格,还可能替换其他字符如点号等。但根据用户的问题描述,可能只需要替换空格为下划线,并移除括号,同时可能替换其他特定的子串,但用户没有具体说明,所以可能需要将这些作为参数传递给函数,或者硬编码到函数中。 例如,用户的问题中提到的替换特定子串可能包括如将某些特定的字符串替换,比如将"old_text"替换为"new_text"。但如果没有具体说明,可能需要让用户自定义,但根据问题描述,用户可能希望函数内部处理这些步骤,所以可能需要将这些步骤写进函数里。例如: 函数处理流程: 1. 去除首尾空格:col.strip() 2. 替换特定子串:比如用户可能想替换某些特定的子串,如将"data"替换为"info",但用户的问题中没有给出具体例子,所以可能需要假设用户想要替换的是空格为下划线,或者可能需要将多个替换步骤合并。例如,用户可能想先替换空格为下划线,然后再处理其他字符,比如括号。 例如,处理步骤: - 去除首尾空格 - 替换所有空格为下划线 - 删除所有括号(替换'('')'为空) - 转换为小写 所以,函数可能是这样的: def clean_column_name(col): col = col.strip() col = col.replace(' ', '_') col = col.replace('(', '').replace(')', '') col = col.lower() return col 但可能还需要处理其他类型的括号,如方括号或大括号,但用户的问题中只提到“移除括号”,所以可能只需要处理圆括号。或者是否需要处理所有类型的括号?用户的问题可能指的是所有的括号,比如圆括号、方括号、花括号等。但根据问题描述,可能只需要处理圆括号,或者可能用户没有明确,所以可能需要明确询问,但作为解决方案,可能需要处理所有类型的括号,或者按用户给出的示例来处理。 但用户的问题中没有具体示例,所以可能需要假设用户需要移除所有括号类型。或者,可能用户希望移除所有括号,包括圆括号、方括号等。例如,可以用正则表达式来替换所有非字母数字或下划线的字符,但用户的问题中可能希望更具体,比如只移除括号,而不是其他符号。所以可能应该按照用户的明确步骤来处理:即先strip,替换空格为下划线,移除括号,转小写。 另外,替换特定子串可能需要更灵活的处理。比如,用户可能希望替换某个特定的子串,如将"old"替换为"new",但问题中没有明确,所以可能需要将这部分作为参数,或者忽略,如果用户的问题中只是替换空格为下划线移除括号的话。 现在,考虑如何将这些步骤整合到函数中。例如: def clean_column_name(col): # 删除首尾空格 col = col.strip() # 替换特定子串,例如替换空格为下划线 col = col.replace(' ', '_') # 移除括号(包括圆括号、方括号、花括号) col = col.replace('(', '').replace(')', '').replace('[', '').replace(']', '').replace('{', '').replace('}', '') # 转换为小写 col = col.lower() return col 或者,更高效的方式是使用正则表达式一次性替换所有括号。例如,使用re.sub(r'[\(\)\[\]\{\}]', '', col) 来替换所有类型的括号。 这样可能更简洁。所以可能修改为: import re def clean_column_name(col): col = col.strip() col = col.replace(' ', '_') # 使用正则表达式移除所有类型的括号 col = re.sub(r'[()[\]{}]', '', col) col = col.lower() return col 这样,可以处理所有括号的情况,而无需多次replace。 接下来,用户可能还需要替换其他特定的子串,例如用户可能希望将某些特定的字符串替换掉,比如将"old"替换为"new"。但问题中没有明确,所以可能需要假设用户希望将这些步骤作为可配置的部分。但根据用户的问题描述,他可能只是需要实现上述的几个步骤,所以可能不需要额外的替换步骤,除非在问题中提到。 然后,如何将这个函数应用到DataFrame的列名上。Pandas的DataFrame的columns属性可以通过rename方法或者直接赋值来修改。例如: df.columns = [clean_column_name(col) for col in df.columns] 或者使用rename方法: df = df.rename(columns=clean_column_name) 这两种方法都可以。但需要注意的是,rename方法中的columns参数可以接受一个函数,该函数会被应用到每个列名上。所以更简洁的方式是使用df.rename(columns=clean_column_name, inplace=True) 或者返回新的DataFrame。 例如,在函数中处理: def process_columns(df): df.columns = [clean_column_name(col) for col in df.columns] return df 或者: df = df.rename(columns=lambda x: clean_column_name(x)) 这两种方式都是可行的。 现在,结合用户的问题,用户希望将函数应用于DataFrame的columns属性,所以最终的代码可能如下: import pandas as pd import re def clean_column_name(col): # 处理步骤 col = col.strip() # 删除首尾空格 col = re.sub(r'\s+', '_', col) # 替换所有空格(包括多个连续空格)为下划线 col = re.sub(r'[()[\]{}]', '', col) # 移除所有类型的括号 col = col.lower() # 转换为小写 return col # 应用函数到DataFrame的列名 df = pd.DataFrame(...) # 假设已有DataFrame df.columns = [clean_column_name(col) for col in df.columns] 或者使用rename方法: df = df.rename(columns=clean_column_name) 这样,列名就会被处理。 但需要注意,替换空格为下划线时,如果原列名中有多个连续空格,可能需要将它们替换为一个下划线。例如,使用正则表达式替换所有空白字符为单个下划线。例如,原列名是" column name ",处理后应为"column_name"。所以,在替换空格时,使用re.sub(r'\s+', '_', col.strip())可能更合适,这样多个空格会被替换为一个下划线。 因此,改进后的函数可能如下: def clean_column_name(col): # 删除首尾空格并替换中间连续空格为下划线 col = col.strip() col = re.sub(r'\s+', '_', col) # 将任意数量的空白字符替换为一个下划线 col = re.sub(r'[()[\]{}]', '', col) # 移除括号 col = col.lower() return col 这样处理后的列名会更整洁,例如原列名" Age (years) "会被处理为"age_years"。 接下来,用户可能希望替换特定子串,比如将某些特定的字符串替换掉。例如,如果列名中有"data",需要替换为"info",则可以在函数中添加这一步。但问题中没有说明,所以可能需要忽略,或者作为扩展提到。 总结步骤: 1. 删除首尾空格:使用strip() 2. 替换所有空格(包括多个连续空格)为单个下划线:使用正则表达式re.sub(r'\s+', '_', col) 3. 移除所有类型的括号:使用正则表达式re.sub(r'[()[\]{}]', '', col) 4. 转换为小写:lower() 然后,将这些步骤整合到函数中,再应用到DataFrame的列名上。 现在,测试一下这个函数: 例如,原列名为" Birth Date (YYYY) ",处理后的结果应为"birth_date_yyyy"。 分解步骤: strip() → "Birth Date (YYYY)" 替换空格 → "Birth_Date_(YYYY)" 移除括号 → "Birth_Date_YYYY" 转小写 → "birth_date_yyyy" 但根据函数中的处理顺序,应该是: strip()后是"Birth Date (YYYY)" 替换空格为下划线 → "Birth_Date_(YYYY)" 然后移除括号 → "Birth_Date_YYYY" 转小写 → "birth_date_yyyy" 是的,这样正确。 另一个例子:" Total Amount $ " → 处理后变成"total_amount_$",但$符号没有被处理。用户的问题中没有提到处理其他特殊符号,所以可能不需要处理,除非用户有额外需求。但根据用户的问题描述,只需要处理括号,所以$符号会保留。这可能符合预期,或者用户可能需要进一步处理,但问题中没有提到,所以不需要处理。 现在,如何将这个函数应用到DataFrame的列名? 例如,假设有一个DataFrame: df = pd.DataFrame({' Name ': [1,2], 'Age (years)': [3,4], 'Total Score ': [5,6]}) 列名为[' Name ', 'Age (years)', 'Total Score '] 应用函数后,列名应变为['name', 'age_years', 'total_score'] 测试: clean_column_name(' Name ') → 'name' clean_column_name('Age (years)') → 处理步骤: strip → 'Age (years)' 替换空格为下划线 → 'Age_(years)' 移除括号 → 'Ageyears'? 不对,这里可能需要更正。 哦,原列名是'Age (years)',经过strip后是'Age (years)',替换空格为下划线 → 'Age_(years)',然后移除括号 → 'Ageyears'? 不,这里可能有问题。因为括号中的空格已经被替换为下划线了吗? 原列名处理步骤: 原列名是'Age (years)' strip() → 'Age (years)'(假设前后没有空格) 替换空格为下划线 → 'Age_(years)'(中间的括号内的空格会被替换为下划线吗?) 然后移除括号 → 'Ageyears'? 或者替换空格是在处理括号之前,所以中间的括号内的空格被替换为下划线,然后括号被移除,所以结果会是'Ageyears'吗? 例如,原列名中的空格在替换步骤中被转为下划线,所以: 原列名'Age (years)' → strip后是'Age (years)' 替换空格为下划线 → 'Age_(years)'(因为中间有一个空格在'Age''(years)'之间,所以替换为下划线) 然后移除括号 → 'Ageyears'? 不,原列名中的括号是'(years)',替换空格为下划线后变成'_',然后移除括号中的'('')',所以变成 'Ageyears'? 这似乎有问题,因为原列名中的括号里的内容可能被处理错误。 例如,原列名中的'Age (years)',处理步骤: strip() → 'Age (years)' 替换空格为下划线 → 'Age_(years)' (因为中间有一个空格变成下划线) 然后移除括号 → 'Ageyears'(替换掉'(', ')', 得到 'Ageyears') 但用户可能希望得到的是'age_years'。所以,这里可能有问题,因为原列名中的括号中有内容,比如'(years)',在移除括号后,会变成 'years',但中间的下划线如何处理? 这说明在替换空格为下划线时,可能将括号前的空格替换为下划线,但随后移除括号会导致下划线内容连接。例如: 原列名:'Age (years)' 处理步骤: 1. strip() → 'Age (years)' 2. 替换空格为下划线 → 'Age_(years)' 3. 移除括号 → 'Ageyears' → 转换为小写 → 'ageyears' 但用户可能期望的结果是 'age_years'。这说明处理步骤可能有问题,需要调整顺序。 问题出现在替换空格为下划线的步骤是在处理括号之前,导致括号内的空格也被替换为下划线,但随后括号被移除,导致下划线内容相连。 因此,正确的处理顺序应该是先移除括号,再处理空格。例如: 处理步骤: 1. strip() → 'Age (years)' 2. 移除括号 → 'Age years' 3. 替换空格为下划线 → 'Age_years' 4. 转小写 → 'age_years' 这样更符合用户预期。所以,调整函数中的步骤顺序: def clean_column_name(col): col = col.strip() # 先移除括号 col = re.sub(r'[()[\]{}]', '', col) # 替换空格为下划线 col = re.sub(r'\s+', '_', col) col = col.lower() return col 这样处理后的结果会是: 原列名'Age (years)' → 移除括号后变成'Age years' → 替换空格为下划线 → 'Age_years' → 转小写 → 'age_years' 这更符合用户的预期。因此,步骤顺序需要调整,先处理括号,再替换空格为下划线。这样避免了括号内的空格被转换为下划线的问题。 因此,正确的函数应该是: import re def clean_column_name(col): # 删除首尾空格 col = col.strip() # 移除所有括号 col = re.sub(r'[()[\]{}]', '', col) # 替换连续空格为下划线 col = re.sub(r'\s+', '_', col) # 转换为小写 col = col.lower() return col 这样处理后的列名会更符合用户的需求。例如,原列名' Birth Date (YYYY) '处理过程: strip → 'Birth Date (YYYY)' 移除括号 → 'Birth Date YYYY' 替换空格 → 'Birth_Date_YYYY' 转小写 → 'birth_date_yyyy' 这正是用户想要的。 现在,应用这个函数到DataFrame的列名: df.columns = [clean_column_name(col) for col in df.columns] 或者使用rename方法: df = df.rename(columns=clean_column_name) 这样,所有列名都会被处理。 现在,用户的问题中还提到了“替换特定子串”,可能指的是除了上述步骤外,还需要替换其他特定的子串,比如将"data"替换为"info"。如果用户需要这一步,可以在函数中添加,例如: def clean_column_name(col, replace_dict=None): col = col.strip() col = re.sub(r'[()[\]{}]', '', col) # 替换特定子串 if replace_dict: for old, new in replace_dict.items(): col = col.replace(old, new) col = re.sub(r'\s+', '_', col) col = col.lower() return col 这样,用户可以通过传递replace_dict参数来替换特定的子串。但用户的问题中没有提到需要这个,所以可能不需要包含,但作为扩展可以考虑。不过根据问题描述,用户可能只需要处理给出的步骤,所以可能不需要添加这个参数。 因此,最终的函数应该按照调整后的步骤顺序,先处理括号,再替换空格为下划线,然后转小写。 现在,验证这个函数: 测试案例1: 输入列名:' User Name (Primary) ' 处理步骤: strip → 'User Name (Primary)' 移除括号 → 'User Name Primary' 替换空格 → 'User_Name_Primary' 转小写 → 'user_name_primary' 测试案例2: 输入列名:'Total Score ' 处理步骤: strip → 'Total Score' 移除括号 → 'Total Score'(无括号) 替换空格 → 'Total_Score' 转小写 → 'total_score' 测试案例3: 输入列名:'Age(years)' 处理步骤: strip → 'Age(years)' 移除括号 → 'Ageyears' 替换空格 → 'Ageyears'(无空格) 转小写 → 'ageyears' 但原列名中的括号没有空格,所以处理后变成'ageyears',这可能不是用户想要的,但根据用户的要求,移除括号是正确的。如果用户希望将括号内的内容保留,可能需要不同的处理方式,比如将括号内的内容转为下划线或其他方式,但根据用户的问题描述,仅移除括号,所以这是正确的处理。 因此,这个函数应该满足用户的需求。 最后,用户的问题中还提到要应用这个函数到DataFrame的列名,所以最终的代码示例可能如下: import pandas as pd import re def clean_column_name(col): # 处理步骤 col = col.strip() col = re.sub(r'[()[\]{}]', '', col) col = re.sub(r'\s+', '_', col) col = col.lower() return col # 示例DataFrame data = {' Name ': ['Alice', 'Bob'], 'Age (years)': [25, 30], 'Total Score ': [85, 90]} df = pd.DataFrame(data) # 应用函数到列名 df.columns = [clean_column_name(col) for col in df.columns] print(df.columns) # 输出应为 Index(['name', 'age_years', 'total_score'], dtype='object') 这样,用户的问题就被解决了。</think>### 分步解决方案 #### 一、定义字符串处理函数 ```python import re def clean_column_name(col: str) -> str: """ 处理列名的字符串标准化函数 步骤:删除首尾空格 -> 移除所有括号 -> 替换空格为下划线 -> 转换为小写 """ # 删除首尾空格(包括制表符、换行符等) col = col.strip() # 移除所有类型的括号(包括圆括号、方括号、花括号)[^4] col = re.sub(r'[()[\]{}]', '', col) # 将连续空格替换为单个下划线 col = re.sub(r'\s+', '_', col) # 统一转换为小写 return col.lower() ``` #### 二、应用函数到DataFrame列名 ```python import pandas as pd # 示例数据 raw_data = { ' Name (Primary)': ['Alice', 'Bob'], 'Age (years)': [25, 30], 'Total Score ': [85, 90] } df = pd.DataFrame(raw_data) # 方式1:直接修改列名 df.columns = [clean_column_name(col) for col in df.columns] # 方式2:使用rename方法(更推荐) df = df.rename(columns=clean_column_name) # 输出验证 print(df.columns) # 输出:Index(['name_primary', 'age_years', 'total_score'], dtype='object') ``` --- ### 关键处理流程解析 ```mermaid graph TD A[原始列名] --> B{删除首尾空格} B --> C{移除括号} C --> D{替换空格为下划线} D --> E{转换为小写} E --> F[最终列名] ``` #### 三、扩展应用场景 1. **处理特殊字符** 如需移除更多特殊字符(如`$`、`%`),可在正则表达式中扩展: ```python re.sub(r'[()[\]{}$%]', '', col) # 同时移除$% ``` 2. **自定义替换规则** 增加字典参数实现灵活替换: ```python def clean_column_name(col, replace_rules=None): col = col.strip() col = re.sub(r'[()[\]{}]', '', col) if replace_rules: for old, new in replace_rules.items(): col = col.replace(old, new) col = re.sub(r'\s+', '_', col) return col.lower() # 使用示例:将"id"替换为"identifier" df = df.rename(columns=lambda x: clean_column_name(x, {'id': 'identifier'})) ``` 3. **处理多语言字符** 支持中文等非ASCII字符: ```python col = col.encode('utf-8').decode('unicode_escape') # 处理编码问题 ``` --- ### 常见问题解答 **Q1: 如何保留部分括号内容?** 使用更精确的正则表达式: ```python re.sub(r'(?<!\w)[()](?!\w)', '', col) # 只移除孤立括号 ``` **Q2: 为什么要先移除括号再替换空格?** 避免出现`Age_(years)`这样的中间结果,最终得到更干净的`age_years`[^1] **Q3: 如何处理带连字符的列名?** 在替换空格前处理: ```python col = col.replace('-', '_') # 将连字符转为下划线 ``` --- ### 性能优化建议 1. **预编译正则表达式**(提升处理速度): ```python BRACKETS_PATTERN = re.compile(r'[()[\]{}]') SPACES_PATTERN = re.compile(r'\s+') def clean_column_name(col): col = col.strip() col = BRACKETS_PATTERN.sub('', col) col = SPACES_PATTERN.sub('_', col) return col.lower() ``` 2. **批量处理优化**(适用于大数据集): ```python from concurrent.futures import ThreadPoolExecutor with ThreadPoolExecutor() as executor: df.columns = list(executor.map(clean_column_name, df.columns)) ``` --- 通过以上实现,可以高效规范DataFrame列名格式[^2][^3][^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值