大模型相关笔记整理

本文探讨了如何通过优化大模型prompt,如加入垂直知识、控制长度和使用Langchain工具链来提高客服系统的准确性、效率和成本效益。还介绍了思维链原理和如何利用AI生成相关上下文以增强逻辑推理能力。
摘要由CSDN通过智能技术生成

1.客服类Prompt英文简写

语音识别ASR -> 语言理解NLU -> 状态跟踪DST -> 检索候选(DB/API) -> 对话策略Policy -> 语言生成NLG -> 语音合成TTS

2.prompt,要把大模型当人看,要了解大模型。prompt要举例。

3.一切问题先尝试用 prompt 解决,往往有四两拨千斤的效果

4.将垂直知识加入 prompt,以使其准确回答

5.用例子实现统一口径

6.大模型应用架构师想什么?

怎样能更准确?答:让更多的环节可控

怎样能更省钱?答:减少 prompt 长度,每个tonken都要花钱,prompt越长,花钱越多。

怎样让系统简单好维护?

7.教程里面部署了ruby。

8.思维链的原理

让 AI 生成更多相关的内容,构成更丰富的「上文」,从而提升「下文」正确的概率

对涉及计算和逻辑推理等复杂问题,尤为有效

9.Langchain 是一套工具链。接口经常变动,迭代速度快。chain是封装一系列功能集合。

他是封装了各种模型接口,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值