深度学习--防止过拟合的几种方法

  • 引入正则项
  • 使用dropout
  • 提前结束训练
  • 增加样本数量

本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:

  • Markdown和扩展Markdown简洁的语法

快捷键

  • 加粗 Ctrl + B
  • 斜体 Ctrl + I
  • 引用 Ctrl + Q
  • 插入链接 Ctrl + L
  • 插入代码 Ctrl + K
  • 插入图片 Ctrl + G
  • 提升标题 Ctrl + H
  • 有序列表 Ctrl + O
  • 无序列表 Ctrl + U
  • 横线 Ctrl + R
  • 撤销 Ctrl + Z
  • 重做 Ctrl + Y

Markdown及扩展

Markdown 是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档,然后转换成格式丰富的HTML页面。 —— [ 维基百科 ]

使用简单的符号标识不同的标题,将某些文字标记为粗体或者斜体,创建一个链接等,详细语法参考帮助?。

本编辑器支持 Markdown Extra ,  扩展了很多好用的功能。具体请参考Github.

表格

Markdown Extra 表格语法:

项目价格
Computer$1600
Phone$12
Pipe$1

可以使用冒号来定义对齐方式:

项目价格数量
Computer1600 元5
Phone12 元12
Pipe1 元234

定义列表

Markdown Extra 定义列表语法: 项目1 项目2
定义 A
定义 B
项目3
定义 C

定义 D

定义D内容

代码块

代码块语法遵循标准markdown代码,例如:

@requires_authorization
def somefunc(param1='', param2=0):
    '''A docstring'''
    if param1 > param2: # interesting
        print 'Greater'
    return (param2 - param1 + 1) or None
class SomeClass:
    pass
>>> message = '''interpreter
... prompt'''

脚注

生成一个脚注1.

目录

[TOC]来生成目录:

数学公式

使用MathJax渲染LaTex 数学公式,详见math.stackexchange.com.

  • 行内公式,数学公式为: Γ(n)=(n1)!nN Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N
  • 块级公式:

x=b±b24ac2a x = − b ± b 2 − 4 a c 2 a

更多LaTex语法请参考 这儿.

UML 图:

可以渲染序列图:

Created with Raphaël 2.1.2 张三 张三 李四 李四 嘿,小四儿, 写博客了没? 李四愣了一下,说: 忙得吐血,哪有时间写。

或者流程图:

Created with Raphaël 2.1.2 开始 我的操作 确认? 结束 yes no
  • 关于 序列图 语法,参考 这儿,
  • 关于 流程图 语法,参考 这儿.

离线写博客

即使用户在没有网络的情况下,也可以通过本编辑器离线写博客(直接在曾经使用过的浏览器中输入write.blog.csdn.net/mdeditor即可。Markdown编辑器使用浏览器离线存储将内容保存在本地。

用户写博客的过程中,内容实时保存在浏览器缓存中,在用户关闭浏览器或者其它异常情况下,内容不会丢失。用户再次打开浏览器时,会显示上次用户正在编辑的没有发表的内容。

博客发表后,本地缓存将被删除。 

用户可以选择 把正在写的博客保存到服务器草稿箱,即使换浏览器或者清除缓存,内容也不会丢失。

注意:虽然浏览器存储大部分时候都比较可靠,但为了您的数据安全,在联网后,请务必及时发表或者保存到服务器草稿箱

浏览器兼容

  1. 目前,本编辑器对Chrome浏览器支持最为完整。建议大家使用较新版本的Chrome。
  2. IE9以下不支持
  3. IE9,10,11存在以下问题
    1. 不支持离线功能
    2. IE9不支持文件导入导出
    3. IE10不支持拖拽文件导入


  1. 这里是 脚注内容.
### 深度学习中的过拟合原因 在深度学习中,过拟合通常发生在模型过于复杂的情况下,即当模型参数过多而训练样本数量相对较少时。此时,模型可能会记住训练数据的具体特征而非其潜在规律,导致在测试集上的性能显著下降[^1]。 具体来说,权重较大的情况更容易引发过拟合现象。这是因为大权重往往意味着模型对某些输入变量赋予了过高的重要性,从而使模型倾向于捕捉噪声而不是真实的数据分布模式[^3]。 --- ### 过拟合的解决方法 #### 1. **正则化** 正则化是一种有效的手段来缓解过拟合问题。它通过向损失函数添加额外的惩罚项,限制模型参数的大小,从而避免模型变得过于复杂。常见的正则化形式有 L2 和 L1 正则化: - **L2 正则化**:也称为 Ridge 回归,在损失函数中增加了一个与权重平方成比例的惩罚项。这种方法能够有效地减小权重值,降低模型复杂度并提升泛化能力。 - **效果分析**:尽管正则化有助于改善大多数场景下的过拟合问题,但在特定条件下也可能适得其反,表现为训练结果不如未应用正则化的版本好[^2]。 以下是 PyTorch 中实现带 L2 正则化的简单代码示例: ```python import torch.nn as nn import torch.optim as optim model = YourModel() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=0.001) # 设置weight_decay作为L2正则化系数 ``` --- #### 2. **Dropout** Dropout 是另一种广泛使用的防止过拟合的技术。它的基本思想是在每次前向传播过程中随机丢弃一部分神经元(将其输出置零),以此强制网络学会冗余表示,增强鲁棒性[^4]。 PyTorch 提供了内置模块 `nn.Dropout` 来轻松实现 Dropout 功能: ```python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(784, 500) self.dropout = nn.Dropout(p=0.5) # p 表示被丢弃的概率 self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.relu(self.fc1(x)) x = self.dropout(x) # 应用dropout层 x = self.fc2(x) return x ``` --- #### 3. **Batch Normalization (BN)** 批量标准化不仅加速收敛还能间接起到一定的抗过拟合作用。通过规范化每一层输入数据的均值和方差,减少了内部协变量偏移的影响,进而简化优化过程。 --- ### 总结 综合以上几种技术可以看出,它们各自从不同角度出发应对过拟合挑战——无论是直接约束模型结构还是调整梯度更新策略。然而需要注意的是,任何单一措施都不足以完全消除这一风险;实际操作中常常需要结合多种方式共同发挥作用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值