《Python 深度学习》4.4 防止过拟合的常用方法 (代码)

防止神经网络过拟合的常用方法包括:

1.减小网络容量;2.添加权重正则化;3.添加dropout;4.获取更多的训练数据。

Overfitting and underfitting

过拟合与欠拟合

为了防止模型从训练数据中学到错误或无关紧要的模式,最优解决方法是获取更多的训练数据。模型的训练数据越多,泛化能力自然也越好。如果无法获取更多数据,次优解决方法是调节模型允许存储的信息量,或对模型允许存储的信息加以约束。如果一个网络只能记住几个模式,那么优化过程会迫使模型集中学习最重要的模式,这样更可能得到良好的泛化。

这种降低过拟合的方法叫作正则化(regularization)。我们先介绍几种最常见的正则化方法: 然后将其应用于实践中,以改进上一节的电影分类模型。


from keras.datasets import imdb
import numpy as np
​
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
​
def vectorize_sequences(sequences, dimension=10000):
    # Create an all-zero matrix of shape (len(sequences), dimension)(创建一个形状为 (len(sequences), dimension) 的零矩阵)
    results = np.zeros((len(sequences), dimension))
    for i, sequence in enumerate(sequences):
        results[i, sequence] = 1.  # set specific indices of results[i] to 1.(将 results[i] 的指定索引设为 1)
    return results
​
# Our vectorized training data(将训练数据向量化)
x_train = vectorize_sequences(train_data)
# Our vectorized test data(将测试数据向量化)
x_test = vectorize_sequences(test_data)
# Our vectorized labels(将标签向量化)
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')

克服过拟合

减小网络大小

防止过拟合的最简单的方法就是减小模型大小,即减少模型中可学习参数的个数(这由层数和每层的单元个数决定)。在深度学习中,模型中可学习参数的个数通常被称为模型的容量(capacity)。直观上来看,参数更多的模型拥有更大的记忆容量(memorization capacity),因此能 够在训练样本和目标之间轻松地学会完美的字典式映射,这种映射没有任何泛化能力。例如,拥 有 500 000 个二进制参数的模型,能够轻松学会 MNIST 训练集中所有数字对应的类别——我们 只需让 50 000 个数字每个都对应 10 个二进制参数。但这种模型对于新数字样本的分类毫无用处。 始终牢记:深度学习模型通常都很擅长拟合训练数据,但真正的挑战在于泛化,而不是拟合。


from keras import models
from keras import layers
​
original_model = models.Sequential()
original_model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
original_model.add(layers.Dense(16, activation='relu'))
original_model.add(layers.Dense(1, activation='sigmoid'))
​
original_model.compile(optimizer='rmsprop',
                       loss='binary_crossentropy',
                       metrics=['acc'])

现在我们尝试用下面这个更小的网络来替换它。


smaller_model = models.Sequential()
smaller_model.add(layers.Dense(4, activation='relu', input_shape=(10000,)))
smaller_model.add(layers.Dense(4, activation='relu'))
smaller_model.add(layers.Dense(1, activation='sigmoid'))
​
smaller_model.compile(optimizer='rmsprop',
                      loss='binary_crossentropy',
                      metrics=['acc'])

original_hist = original_model.fit(x_train, y_train,
                                   epochs=20,
                                   batch_size=512,
                                   validation_data=(x_test, y_test))

smaller_model_hist = smaller_model.fit(x_train, y_train,
                                       epochs=20,
                                       batch_size=512,
                                       validation_data=(x_test, y_test))

 

epochs = range(1, 21)
original_val_loss = original_hist.history['val_loss']
smaller_model_val_loss = smaller_model_hist.history['val_loss']

import matplotlib.pyplot as plt
​
# b+ is for "blue cross"
plt.plot(epochs, original_val_loss, 'b+', label='Original model')
# "bo" is for "blue dot"
plt.plot(epochs, smaller_model_val_loss, 'bo', label='Smaller model')
plt.xlabel('Epochs')
plt.ylabel('Validation loss')
plt.legend()
​
plt.show()

 

 

添加权重正则化

你可能知道奥卡姆剃刀(Occam’s razor)原理:如果一件事情有两种解释,那么最可能正 确的解释就是最简单的那个,即假设更少的那个。这个原理也适用于神经网络学到的模型:给 定一些训练数据和一种网络架构,很多组权重值(即很多模型)都可以解释这些数据。简单模 型比复杂模型更不容易过拟合。

这里的简单模型(simple model)是指参数值分布的熵更小的模型(或参数更少的模型,比如上一节的例子)。因此,一种常见的降低过拟合的方法就是强制让模型权重只能取较小的值, 从而限制模型的复杂度,这使得权重值的分布更加规则(regular)。这种方法叫作权重正则化(weight regularization),其实现方法是向网络损失函数中添加与较大权重值相关的成本(cost)。 这个成本有两种形式。

  • L1 正则化(L1 regularization):添加的成本与权重系数的绝对值[权重的 L1 范数(norm)] 成正比。
  • L2 正则化(L2 regularization):添加的成本与权重系数的平方(权重的 L2 范数)成正比。 神经网络的 L2 正则化也叫权重衰减(weight decay)。不要被不同的名称搞混,权重衰减 与 L2 正则化在数学上是完全相同的。

在 Keras 中,添加权重正则化的方法是向层传递 权重正则化项实例(weight regularizer instance)作为关键字参数。下列代码将向电影评论分类网络中添加 L2 权重正则化。


from keras import regularizers
​
l2_model = models.Sequential()
l2_model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),
                          activation='relu', input_shape=(10000,)))
l2_model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),
                          activation='relu'))
l2_model.add(layers.Dense(1, activation='sigmoid'))

l2_model.compile(optimizer='rmsprop',
                 loss='binary_crossentropy',
                 metrics=['acc'])

l2(0.001) 的意思是该层权重矩阵的每个系数都会使网络总损失增加 0.001 * weight_coefficient_value。注意,由于这个惩罚项只在训练时添加,所以这个网络的训练损失会 比测试损失大很多。 

 


l2_model_hist = l2_model.fit(x_train, y_train,
                             epochs=20,
                             batch_size=512,
                             validation_data=(x_test, y_test))

l2_model_val_loss = l2_model_hist.history['val_loss']
​
plt.plot(epochs, original_val_loss, 'b+', label='Original model')
plt.plot(epochs, l2_model_val_loss, 'bo', label='L2-regularized model')
plt.xlabel('Epochs')
plt.ylabel('Validation loss')
plt.legend()
​
plt.show()

 


from keras import regularizers
​
# L1 regularization(L1 正则化)
regularizers.l1(0.001)
​
# L1 and L2 regularization at the same time(同时做 L1 和 L2 正则化)
regularizers.l1_l2(l1=0.001, l2=0.001)

 

添加 dropout 正则化

dropout 是神经网络最有效也最常用的正则化方法之一,它是由多伦多大学的 Geoffrey Hinton和他的学生开发的。对某一层使用 dropout,就是在训练过程中随机将该层的一些输出特征舍弃(设置为 0)。假设在训练过程中,某一层对给定输入样本的返回值应该是向量 [0.2, 0.5, 1.3, 0.8, 1.1]。使用 dropout 后,这个向量会有几个随机的元素变成 0,比如 [0, 0.5,1.3, 0, 1.1]。dropout 比率(dropout rate)是被设为 0 的特征所占的比例,通常在 0.2~0.5 范围内。测试时没有单元被舍弃,而该层的输出值需要按 dropout 比率缩小,因为这时比训练时有更多的单元被激活,需要加以平衡。

假设有一个包含某层输出的 Numpy 矩阵 layer_output,其形状为 (batch_size, features)。训练时,我们随机将矩阵中一部分值设为 0。


dpt_model = models.Sequential()
dpt_model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
dpt_model.add(layers.Dropout(0.5))
dpt_model.add(layers.Dense(16, activation='relu'))
dpt_model.add(layers.Dropout(0.5))
dpt_model.add(layers.Dense(1, activation='sigmoid'))
​
dpt_model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['acc'])
dpt_model_hist = dpt_model.fit(x_train, y_train,
                               epochs=20,
                               batch_size=512,
                               validation_data=(x_test, y_test))
dpt_model_val_loss = dpt_model_hist.history['val_loss']
​
plt.plot(epochs, original_val_loss, 'b+', label='Original model')
plt.plot(epochs, dpt_model_val_loss, 'bo', label='Dropout-regularized model')
plt.xlabel('Epochs')
plt.ylabel('Validation loss')
plt.legend()
​
plt.show()

总结一下,防止神经网络过拟合的常用方法包括:

  • 获取更多的训练数据
  • 减小网络容量
  • 添加权重正则化
  • 添加 dropout

 

 

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值