目标检测——概述 、性能指标、常用方法

参考1:https://blog.csdn.net/xiaohu2022/article/details/79600037
参考2:https://zhuanlan.zhihu.com/p/33277354

性能指标

例子:参考
准确率和召回率通常是此消彼长的(trade off),很难兼得。很多时候用参数来控制,通过修改参数则能得出一个准确率和召回率的曲线(ROC),这条曲线与x和y轴围成的面积就是AUC(ROC Area)。AUC可以综合衡量一个预测模型的好坏,这一个指标综合了precision和recall两个指标。

但AUC计算很麻烦,有人用简单的F-score来代替。F-score计算方法很简单:

F-score=(2precisionrecall)/(precision+recall)

即使不是算数平均,也不是几何平均。可以理解为几何平均的平方除以算术平均。

不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:

正确率 = 700 / (700 + 200 + 100) = 70%

召回率 = 700 / 1400 = 50%

F值 = 70% * 50% * 2 / (70% + 50%) = 58.3%

不妨看看如果把池子里的所有的鲤鱼、虾和鳖都一网打尽,这些指标又有何变化:

正确率 = 1400 / (1400 + 300 + 300) = 70%

召回率 = 1400 / 1400 = 100%

F值 = 70% * 100% * 2 / (70% + 100%) = 82.35%

由此可见,正确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。

当然希望检索结果Precision越高越好,同时Recall也越高越好,但事实上这两者在某些情况下有矛盾的。比如极端情况下,我们只搜索出了一个结果,且是准确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么比如Recall是100%,但是Precision就会很低。因此在不同的场合中需要自己判断希望Precision比较高或是Recall比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。

正文:参考
  目标检测模型的主要性能指标是检测准确度和速度,对于准确度,目标检测要考虑物体的定位准确性,而不单单是分类准确度。一般情况下,two-stage算法在准确度上有优势,而one-stage算法在速度上有优势。

真实情况预测为正预测为反召回率
TP(真正)FN(假反) R = T P / ( T P + F N ) R=TP/(TP+FN) R=TP/(TP+FN)
FP(假正)TN(真反)
准确率 P = T P / ( T P + F P ) P=TP/(TP+FP) P=TP/(TP+FP)

          TP:样本为正,预测结果为正;FN:样本为正,预测结果为负。
          FP:样本为负,预测结果为正;TN:样本为负,预测结果为负;

  1. accuracy:(TP + TN )/( TP + FP + TN + FN)
  2. Precision:TP / (TP + FP),预测结果中,究竟有多少是真的正,即正确预测为正占全部预测为正的比例(换言之)
  3. Recall: TP / (TP + FN),所有正样本中,你究竟预测对了多少,即正确预测为正占全部正样本的比例

  随着我们选定的样本越来也多,recall一定会越来越高,而precision整体上会呈下降趋势。把recall当成横坐标,precision当成纵坐标,即可得到常用的precision-recall曲线。这个例子的precision-recall曲线如下:
在这里插入图片描述

计算AP

  1. 保存所有样本的confidence score
  2. 对confidence score进行排序
  3. 计算precision和recall
  4. 首先设定一组阈值,[0, 0.1, 0.2, …, 1]。然后对于recall大于每一个阈值(比如recall>0.3),我们都会得到一个对应的最大precision。这样,我们就计算出了11个precision。AP即为这11个precision的平均值。这种方法英文叫做11-point interpolated average precision。
  5. 新的计算方法假设这N个样本中有M个正例,那么我们会得到M个recall值(1/M, 2/M, …, M/M),对于每个recall值r,我们可以计算出对应(r’ > r)的最大precision,然后对这M个precision值取平均即得到最后的AP值。

  对于目标检测,首先要单独计算各个类别的AP值,这是评估检测效果的重要指标。取各个类别的AP的平均值,就得到一个综合指标mAP(Mean Average Precision),mAP指标可以避免某些类别比较极端化而弱化其它类别的性能这个问题。

  对于目标检测,mAP一般在某个固定的IoU上计算,但是不同的IoU值会改变TP和FP的比例,从而造成mAP的差异。COCO数据集提供了官方的评估指标,它的AP是计算一系列IoU下(0.5:0.05:0.9,见说明)AP的平均值,这样可以消除IoU导致的AP波动。其实对于PASCAL VOC数据集也是这样,Facebook的Detectron上的有比较清晰的实现。

  除了检测准确度,目标检测算法的另外一个重要性能指标是速度,只有速度快,才能实现实时检测,这对一些应用场景极其重要。评估速度的常用指标是每秒帧率(Frame Per Second,FPS),即每秒内可以处理的图片数量。当然要对比FPS,你需要在同一硬件上进行。另外也可以使用处理一张图片所需时间来评估检测速度,时间越短,速度越快。

常用方法

two-stage检测算法: 其将检测问题划分为两个阶段,首先产生候选区域(region proposals),然后对候选区域分类(一般还需要对位置精修),这类算法的典型代表是基于region proposal的R-CNN系算法,如R-CNN,Fast R-CNN,Faster R-CNN等;
one-stage检测算法: 其不需要region proposal阶段,直接产生物体的类别概率和位置坐标值,比较典型的算法如YOLO和SSD。
在这里插入图片描述

1. two stage的方法

在早期深度学习技术发展进程中,主要都是围绕分类问题展开研究,这是因为神经网络特有的结构输出将概率统计和分类问题结合,提供一种直观易行的思路。国内外研究人员虽然也在致力于将其他如目标检测领域和深度学习结合,但都没有取得成效,这种情况直到R-CNN算法出现才得以解决。

1.1 R-CNN

2014年加州大学伯克利分校的Ross B. Girshick提出R-CNN算法,其在效果上超越同期的Yann Lecun提出的端到端方法OverFeat算法,其算法结构也成为后续two stage的经典结构。R-CNN算法利用选择性搜索(Selective Search)算法评测相邻图像子块的特征相似度,通过对合并后的相似图像区域打分,选择出感兴趣区域的候选框作为样本输入到卷积神经网络结构内部,由网络学习候选框和标定框组成的正负样本特征,形成对应的特征向量,再由支持向量机设计分类器对特征向量分类,最后对候选框以及标定框完成边框回归操作达到目标检测的定位目的。虽然R-CNN算法相较于传统目标检测算法取得了50%的性能提升,但其也有缺陷存在:训练网络的正负样本候选区域由传统算法生成,使得算法速度受到限制;卷积神经网络需要分别对每一个生成的候选区域进行一次特征提取,实际存在大量的重复运算,制约了算法性能。
在这里插入图片描述

1.2 SPP-Net

图1.2 spatial pyramid pooling layer
针对卷积神经网络重复运算问题,2015年微软研究院的何恺明等提出一种SPP-Net算法,通过在卷积层和全连接层之间加入空间金字塔池化结构(Spatial Pyramid Pooling)代替R-CNN算法在输入卷积神经网络前对各个候选区域进行剪裁、缩放操作使其图像子块尺寸一致的做法。利用空间金字塔池化结构有效避免了R-CNN算法对图像区域剪裁、缩放操作导致的图像物体剪裁不全以及形状扭曲等问题,更重要的是解决了卷积神经网络对图像重复特征提取的问题,大大提高了产生候选框的速度,且节省了计算成本。但是和R-CNN算法一样训练数据的图像尺寸大小不一致,导致候选框的ROI感受野大,不能利用BP高效更新权重。

1.3 Fast R-CNN

针对SPP-Net算法的问题,2015年微软研究院的Ross B. Girshick又提出一种改进的Fast R-CNN算法,借鉴SPP-Net算法结构,设计一种ROI pooling的池化层结构,有效解决R-CNN算法必须将图像区域剪裁、缩放到相同尺寸大小的操作。提出多任务损失函数思想,将分类损失和边框回归损失结合统一训练学习,并输出对应分类和边框坐标,不再需要额外的硬盘空间来存储中间层的特征,梯度能够通过RoI Pooling层直接传播。但是其仍然没有摆脱选择性搜索算法生成正负样本候选框的问题。
在这里插入图片描述

1.4 Faster R-CNN

为了解决Fast R-CNN算法缺陷,使得算法实现two stage的全网络结构,2015年微软研究院的任少庆、何恺明以及Ross B Girshick等人又提出了Faster R-CNN算法。设计辅助生成样本的RPN(Region Proposal Networks)网络,将算法结构分为两个部分,先由RPN网络判断候选框是否为目标,再经分类定位的多任务损失判断目标类型,整个网络流程都能共享卷积神经网络提取的的特征信息,节约计算成本,且解决Fast R-CNN算法生成正负样本候选框速度慢的问题,同时避免候选框提取过多导致算法准确率下降。但是由于RPN网络可在固定尺寸的卷积特征图中生成多尺寸的候选框,导致出现可变目标尺寸和固定感受野不一致的现象。

2. one stage的方法

待更…

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值