除法表达式-最大公约数

除法表达式

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述

    给出一个这样的除法表达式:X1/X2/X3/···/Xk,其中Xi是正整数。除法表达式应当按照从左到右的顺序求和,例如表达式1/2/1/2的值为1/4。但是可以在表达式中嵌入括号以改变计算顺序,例如表达式(1/2)/(1/2)的值为1.


输入
首先输入一个N,表示有N组测试数据,
每组数据输入占一行,为一个除法表达式,
输入保证合法。
使表达式的值为整数。k<=10000,Xi<=100000000.
输出
输出YES或NO
样例输入
1
1/2/1/2
样例输出
YES
首先将数字要分离开来,然后就是x1一定只能是分子,x2一定是分母,那么让X1/X2/X3/···/Xk尽可能使整数的话,很明显,应该让分母的个数减少即分母除了x2之外不再有其他数字,所以问题转换成了(x1*x3*x4*x5....*xk)/x2是否为整数,可以用最大公约数,不断的减少x2的值,最后检查x2是否为1即可知道是否可以变为整数
/*
Author: 2486
Memory: 1208 KB		Time: 12 MS
Language: C/C++		Result: Accepted
*/

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn=1e6+5;
int T,cnt,n;
char str[maxn];
int S[10000+5];
int gcd(int a,int b) {
    return b?gcd(b,a%b):a;
}
bool judge() {
    if(cnt<=1||S[0]==0)return true;
    int y=S[1]/gcd(S[0],S[1]);
    for(int i=2; i<cnt; i++) {
        y/=gcd(S[i],y);
    }
    if(y==1)return true;
    return false;
}
int main() {
    scanf("%d",&T);
    while(T--) {
        scanf("%s",str);
        cnt=0,n=strlen(str);
        for(int i=0; i<n; i++) {
            S[cnt++]=atoi(str+i);
            while(i<n&&str[i]!='/')i++;
        }
        printf("%s\n",judge()?"YES":"NO");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值