时间序列数据分析--Time Series--时序模型--ARIMA

本文详细介绍了如何使用ARIMA模型进行时间序列预测。首先,通过差分处理使序列达到平稳状态,然后利用自相关函数(ACF)和偏自相关函数(PACF)确定ARIMA模型的参数p、d、q。最后,通过实例演示了如何构建和应用ARIMA模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ARIMA模型参数选择

  • 检查序列是否平稳
    • 若不平稳,使用差分平稳化序列,确定差分阶数d
  • ARMA定阶
    • 通过PACF确定AR的阶数p
    • 通过ACF确定MA的阶数q
  • 根据参数p,d,q建立模型ARIMA(p,d,q)
#  ARIMA模型
#  平稳性

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

# 构造时间时间序列
df_obj = pd.DataFrame(np.random.randn(1000, 1), 
                       index=pd.date_range('20170101', periods=1000),
                       columns=['data'])
df_obj['data'] = df_obj['data'].cumsum()
print(df_obj.head())

# 一阶差分处理
df_obj['diff_1'] = df_obj['data'].diff(1)

# 二阶差分处理
df_obj['diff_2'] = df_obj['diff_1'].diff(1)

# 查看图像
df_obj.plot(subplots=True, figsize=(18, 12))

## ACF 和 PACF
from scipy import  stats
import statsmodels.api as sm

sm.graphics.tsa.plot_acf(df_obj['data'], lags=20)
sm.graphics.tsa.plot_pacf(df_obj['data'], lags=20)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值