题目描述(根据前序中序,重建二叉树):
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
接题思路:
递归思想:
每颗子树的根节点肯定是pre子数组的首元素,所以每次新建一个子树的根节点。
每次将左右两颗子树当成新的子树进行处理,中序的左右子树索引很好找,前序的开始结束索引通过计算中序中左右子树的大小来计算,然后递归求解,直到startPre>endPre||startIn>endIn说明子树整理完到。方法每次返回左子树活右子树的根节点。
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
TreeNode root=reConstructBinaryTree(pre,0,pre.length-1,in,0,in.length-1);
return root;
}
//前序遍历{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6}
private TreeNode reConstructBinaryTree(int [] pre,int startPre,int endPre,int [] in,int startIn,int endIn) {
if(startPre>endPre||startIn>endIn)
return null;
TreeNode root=new TreeNode(pre[startPre]);
for(int i=startIn;i<=endIn;i++)
if(in[i]==pre[startPre]){
root.left=reConstructBinaryTree(pre,startPre+1,startPre+i-startIn,in,startIn,i-1);
root.right=reConstructBinaryTree(pre,startPre+i-startIn+1,endPre,in,i+1,endIn);
break;
}
return root;
}
}
代码中不宜明白的地方主要是这俩句:
root.left=reConstructBinaryTree(pre,startPre+1,startPre+i-startIn,in,startIn,i-1);
root.right=reConstructBinaryTree(pre,startPre+i-startIn+1,endPre,in,i+1,endIn);
下面解释一下:
root.left的先序结束位置startPre+i-startIn 是根据中序遍历计算而来的。意思是先序的起始位置,再走中序前后为位置的偏移量就是先序的尾位置,其中(中序偏移量=中尾-中头,即i-1 - startIn),先序头为startPre+1,左子树先序尾=先头+中序偏移量=(startPre+1)+(i-1-startIn)。
root.right的先序尾好说,就是endPre,右子树先序的头为:左子树的尾+1,即(startPre+i-startIn)+1