ACM_Fjut周赛某数学题

Fjut周赛郭先生的数学题

Acm(×),数学魔鬼(√)

令\(S_{n}=\sum_{k=1}^{n}a_{k}\)

\(\therefore a_{n}=S_{n}-S_{n-1}(n\geq 2)\)

\(\normalsize{\because \lim_{n \to \infty }\sum_{k=1}^{n}a_{k}\cdot (a_{n})^{2}=\frac{3}{2}}\)

\(\normalsize{\Rightarrow \lim_{n\rightarrow \infty }S_{n}(S_{n}-S_{n-1})^{2}=\frac{3}{2}}\)

\(\because \left \{ \frac{1}{S_{n}} \right \}\)单调递减,且恒大于零

\(\therefore \lim_{n \to \infty }\frac{1}{S_{n}}\)存在,记为A(A>=0)

\(\lim_{n \to \infty }(S_{n}-S_{n-1})^{2}=\frac{3}{2}\)\(\lim_{n \to \infty }\frac{1}{S_{n}}=\frac{3A}{2}\)

若A>0,则\(\lim_{n \to \infty }a_{n}=\sqrt{\frac{3A}{2}}>0\)  \(*_{1}\)

得出\(\sum_{n=1}^{\infty }a_{n}\)发散

且\(\lim_{n \to \infty }S_{n}=\frac{1}{A}\)矛盾

\(\therefore A=0\)

\(\small{\therefore A=0,\lim_{n \to \infty }a_{n}=\sqrt{\frac{3A}{2}}=0,\lim_{n \to \infty }S_{n}=+\infty} \)

由Stocks定理得:

\(\lim_{n \to \infty }\frac{S_{n}^{\frac{3}{2}}}{n}\)

=\(\lim_{n \to \infty }\frac{S_{n}^{\frac{3}{2}}-S_{n-1}^{\frac{3}{2}}}{n-(n-1)}\)

=\(\lim_{n \to \infty }(\sqrt{S_{n}}-\sqrt{S_{n-1}})(S_{n}+S_{n-1}+\sqrt{S_{n}S_{n-1}})\)

=\(\lim_{n \to \infty }\frac{(S_{n}-S_{n-1})(S_{n}+S_{n-1}+\sqrt{S_{n}S_{n-1}})}{\sqrt{S_{n}}+\sqrt{S_{n-1}}}\)

由\(*_{1}\)式得:当\(n \to \infty \),有\(S_{n}-S_{n-1}\sim \sqrt{\frac{3}{2S_{n}}}\)

\(\therefore \lim_{n \to \infty }\frac{S_{n}^{\frac{3}{2}}}{n}\)

=\(\sqrt{\frac{3}{2}}\lim_{n \to \infty }\frac{S_{n}+S_{n-1}+\sqrt{S_{n}S_{n-1}}}{S_{n}+\sqrt{S_{n}S_{n-1}}}\)

\(\sqrt{\frac{3}{2}}\lim_{n \to \infty }\left ( 1+\frac{S_{n-1}}{S_{n}+\sqrt{S_{n}S_{n-1}}}\right )\)

\(\sqrt{\frac{3}{2}}\lim_{n \to \infty }\left ( 1+\frac{1}{\frac{S_{n}}{S_{n-1}}+\sqrt{\frac{S_{n}}{S_{n-1}}}}\right )\)

\(\because \lim_{n \to \infty }\left ( S_{n}-S_{n-1} \right )=0\)

\(\therefore \lim_{n \to \infty }\left ( \frac{S_{n}}{S_{n-1}}-1 \right )=0\)

易得\(\therefore \lim_{n \to \infty }\left ( \frac{S_{n}}{S_{n-1}} \right )=1\)

\(\therefore \lim_{n \to \infty }\left ( \frac{S_{n}^{\frac{3}{2}}}{n} \right )=\left (\frac{3}{2}\right ) ^{\frac{3}{2}} \)

\(\therefore \lim_{n \to \infty }\left ( \frac{S_{n}}{n^{\frac{2}{3}}} \right )=\left (\frac{3}{2}\right )\)

\(\therefore \lim_{n \to \infty }\left ( \frac{\sqrt{S_{n}}}{n^{\frac{1}{3}}} \right )=\sqrt{\frac{3}{2}}\)

\(\therefore \lim_{n \to \infty }a_{n}\sqrt[3]{n}=\lim_{n \to \infty }(S_{n}-S_{n-1})n^{\frac{1}{3}}\)

\(=\sqrt{\frac{3}{2}}\lim_{n \to \infty }\frac{n^{\frac{1}{3}}}{\sqrt{S_{n}}}=\frac{\sqrt{\frac{3}{2}}}{\sqrt{\frac{3}{2}}}=1\)

好题难遇阿,感谢moxin大佬搞的好题!

喜欢这篇文章吗,不妨分享给朋友们吧!
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值