C-K方程

n n n步转移概率

马氏过程在时刻 m m m处于状态 i i i,再经过 n n n步转移到状态 j j j n n n步转移概率表示为
p i j ( n ) ( m ) = P { X ( m + n ) = j ∣ X ( m ) = i } = p i j ( m ) p_{ij}^{(n)}(m)=P\{X(m+n)=j\mid X(m)=i\}=p_{ij}(m) pij(n)(m)=P{X(m+n)=jX(m)=i}=pij(m)
n n n步转移概率具有如下性质:
1.
p i j ( n ) ( m ) ≥ 0 i , j ∈ E p_{ij}^{(n)}(m)\geq 0\quad i,j\in E pij(n)(m)0i,jE
2.
∑ j ∈ E p i j ( n ) ( m ) = 1 i ∈ E \sum_{j\in E}p_{ij}^{(n)}(m)=1\quad i\in E jEpij(n)(m)=1iE

Demo1

{ X ( n ) , n = 0 , 1 , 2 , …   } \{X(n), n=0,1,2,\dots\} {X(n),n=0,1,2,}是状态空间 E = { 0 , 1 } E=\{0, 1\} E={0,1}的马氏链,其中 0 , 1 0, 1 0,1分别表示系统故障/工作,概率转移图如下所示,其中 p 0 + q 0 = 1 , p 1 + q 1 = 1 p_0+q_0=1, p_1+q_1=1 p0+q0=1,p1+q1=1.
ptg
不考虑绝对时间的情况下,求该马氏链所表示的系统的一,二步转移概率矩阵。
解析 X ( n ) X(n) X(n)为齐次马氏链, X ( 0 ) = i X(0)=i X(0)=i表示今天的状态,系统的一步概率转移矩阵为
p 00 = P ( X ( 1 ) = 0 ∣ X ( 0 ) = 0 ) = q 0 p 01 = P ( X ( 1 ) = 1 ∣ X ( 0 ) = 0 ) = p 0 p 10 = P ( X ( 1 ) = 0 ∣ X ( 0 ) = 1 ) = p 1 p 11 = P ( X ( 1 ) = 1 ∣ X ( 0 ) = 1 ) = q 1 \begin{aligned} &p_{00}=P(X(1)=0\mid X(0)=0)=q_0\\ &p_{01}=P(X(1)=1\mid X(0)=0)=p_0\\ &p_{10}=P(X(1)=0\mid X(0)=1)=p_1\\ &p_{11}=P(X(1)=1\mid X(0)=1)=q_1 \end{aligned} p00=P(X(1)=0X(0)=0)=q0p01=P(X(1)=1X(0)=0)=p0p10=P(X(1)=0X(0)=1)=p1p11=P(X(1)=1X(0)=1)=q1
一步转移概率矩阵为
P = [ q 0 p 0 p 1 q 1 ] P= \left[ \begin{matrix} q_0 & p_0\\ p_1 & q_1 \end{matrix} \right] P=[q0p1p0q1]
两步概率转移矩阵为
P ( 2 ) = P 2 P^{(2)}=P^2 P(2)=P2
可以归纳出齐次马氏链的 n n n步概率转移矩阵等于一个 n − 1 n-1 n1步转移概率矩阵与一个一步概率转移矩阵的乘积,即
P ( n ) = P ( n − 1 ) P = P n P^{(n)}=P^{(n-1)}P=P^n P(n)=P(n1)P=Pn
其中 n n n步转移概率为
p i j ( n ) = p i 1 ( n − 1 ) p 1 j + p i 2 ( n − 1 ) p 2 j + ⋯ + p i r ( n − 1 ) p r j = ∑ k = 1 r p i k ( n − 1 ) p k j p_{ij}^{(n)}=p_{i1}^{(n-1)}p_{1j}+p_{i2}^{(n-1)}p_{2j}+\dots+p_{ir}^{(n-1)}p_{rj}=\sum_{k=1}^rp_{ik}^{(n-1)}p_{kj} pij(n)=pi1(n1)p1j+pi2(n1)p2j++pir(n1)prj=k=1rpik(n1)pkj

C-K方程

{ X ( n ) , n = 0 , 1 , 2 , …   } \{X(n), n=0,1,2,\dots\} {X(n),n=0,1,2,}为一个马氏链,状态空间 E = { 0 , ± 1 , ± 2 , …   } E=\{0, \pm 1, \pm 2, \dots\} E={0,±1,±2,}或有限子集,则其 n n n步转移概率满足如下等式
p i j ( n ) ( r ) = ∑ k ∈ E p i k ( m ) ( r ) p k j ( n − m ) ( r + m ) i , j ∈ E 1 ≤ m ≤ n p_{ij}^{(n)}(r)=\sum_{k\in E}p_{ik}^{(m)}(r)p_{kj}^{(n-m)}(r+m)\quad i,j\in E\quad 1\leq m\leq n pij(n)(r)=kEpik(m)(r)pkj(nm)(r+m)i,jE1mn
对应的 n n n步转移概率矩阵为
P ( n ) ( r ) = P ( m ) ( r ) P ( n − m ) ( r + m ) P^{(n)}(r)=P^{(m)}(r)P^{(n-m)}(r+m) P(n)(r)=P(m)(r)P(nm)(r+m)
证明:时刻为 r r r n n n步转移概率为
p i j ( n ) ( r ) = P ( X ( r + n ) = j ∣ X ( r ) = i ) = P ( X ( r + n ) = j [ ⋃ k ∈ E X ( r + m ) = k ] ∣ X ( r ) = i ) = P { ⋃ k ∈ E ( X ( r + n ) = j , X ( r + m ) = k ) ∣ X ( r ) = i } = ∑ k ∈ E P ( X ( r + n ) = j , X ( r + m ) = k ∣ X ( r ) = i ) = M a r k o v ∑ k ∈ E P ( X ( r + m ) = k ∣ X ( r ) = i ) P ( X ( r + n ) = j ∣ X ( r + m ) = k , X ( r ) = i ) = ∑ k ∈ E p i k ( m ) ( r ) p k j ( n − m ) ( r + m ) \begin{aligned} p_{ij}^{(n)}(r)&=P(X(r+n)=j\mid X(r)=i)\\ &=P(X(r+n)=j[\bigcup_{k\in E}X(r+m)=k]\mid X(r)=i)\\ &=P\{\bigcup_{k\in E}(X(r+n)=j, X(r+m)=k)\mid X(r)=i\}\\ &=\sum_{k\in E}P(X(r+n)=j, X(r+m)=k\mid X(r)=i)\\ &\overset{Markov}{=}\sum_{k\in E}P(X(r+m)=k\mid X(r)=i)P(X(r+n)=j\mid X(r+m)=k, X(r)=i)\\ &=\sum_{k\in E}p_{ik}^{(m)}(r)p_{kj}^{(n-m)}(r+m) \end{aligned} pij(n)(r)=P(X(r+n)=jX(r)=i)=P(X(r+n)=j[kEX(r+m)=k]X(r)=i)=P{kE(X(r+n)=j,X(r+m)=k)X(r)=i}=kEP(X(r+n)=j,X(r+m)=kX(r)=i)=MarkovkEP(X(r+m)=kX(r)=i)P(X(r+n)=jX(r+m)=k,X(r)=i)=kEpik(m)(r)pkj(nm)(r+m)

推论1

{ X ( n ) , n = 0 , 1 , 2 , …   } \{X(n), n=0,1,2,\dots\} {X(n),n=0,1,2,}为一个齐次马氏链,状态空间 E = { 0 , ± 1 , ± 2 , …   } E=\{0, \pm 1, \pm 2, \dots\} E={0,±1,±2,}或者有限子集,则其 n n n步转移概率表达式为
p i j ( n ) = ∑ k ∈ E p i k ( m ) p k j ( n − m ) P ( n ) = P ( m ) P ( n − m ) \begin{aligned} &p_{ij}^{(n)}=\sum_{k\in E}p_{ik}^{(m)}p_{kj}^{(n-m)}\\ &P^{(n)}=P^{(m)}P^{(n-m)} \end{aligned} pij(n)=kEpik(m)pkj(nm)P(n)=P(m)P(nm)

推论2

{ X ( n ) , n = 0 , 1 , 2 , …   } \{X(n), n=0,1,2,\dots\} {X(n),n=0,1,2,}为一个马氏链,状态空间 E = { 0 , ± 1 , ± 2 , …   } E=\{0, \pm 1, \pm 2, \dots\} E={0,±1,±2,}为有限子集,则有
p i j ( n ) = ∑ k 1 ∈ E ∑ k 2 ∈ E ⋯ ∑ k n − 1 ∈ E p i k 1 p i k 2 … p k n − 1 j p_{ij}^{(n)}=\sum_{k_1\in E}\sum_{k_2\in E}\dots\sum_{k_{n-1}\in E}p_{ik_1}p_{ik_2}\dots p_{k_{n-1}j} pij(n)=k1Ek2Ekn1Epik1pik2pkn1j
该方程表示质点从 i i i点转移到 j j j点,可以视为一步一步经过 n n n步转移到了 j j j点。

绝对概率与初始概率

马氏链的绝对概率由其初始分布以及相应的转移概率唯一确定,一般地,当 n ≥ 2 n\geq 2 n2时,绝对概率为
p j ( n ) = P { X ( n ) = j } = P { ( X ( n ) = j ) [ ⋃ i ∈ E ( X ( 0 ) = i ) ] } = P { ⋃ i ∈ E ( X ( n ) = j , X ( 0 ) = i ) } = ∑ i ∈ E P ( X ( 0 ) = i ) P ( X ( n ) = j ∣ X ( 0 ) = i ) = ∑ i ∈ E p i p i j ( n ) ( 0 ) \begin{aligned} p_j(n)&=P\{X(n)=j\}=P\{(X(n)=j)[\bigcup_{i\in E}(X(0)=i)]\}\\ &=P\{\bigcup_{i\in E}(X(n)=j, X(0)=i)\}\\ &=\sum_{i\in E} P(X(0)=i)P(X(n)=j\mid X(0)=i)\\ &=\sum_{i\in E}p_ip_{ij}^{(n)}(0) \end{aligned} pj(n)=P{X(n)=j}=P{(X(n)=j)[iE(X(0)=i)]}=P{iE(X(n)=j,X(0)=i)}=iEP(X(0)=i)P(X(n)=jX(0)=i)=iEpipij(n)(0)
即绝对概率 p j ( n ) p_j(n) pj(n)由初始分布以及 n n n步转移概率的唯一确定。

转移概率 p i j ( n ) p_{ij}^{(n)} pij(n)的遍历性与平稳分布

定义1

设齐次马氏链 { X ( n ) , n ≥ 1 } \{X(n), n\geq 1\} {X(n),n1}的状态空间为 E E E,若对于所有状态 i , j ∈ E i,j\in E i,jE,存在不依赖 i i i的常数 π j \pi_j πj,其转移概率 p i j ( n ) p_{ij}^{(n)} pij(n) n → ∞ n\to\infty n时的极限,即
lim ⁡ n → ∞ p i j ( n ) = π j \lim_{n\to\infty}p_{ij}^{(n)}=\pi_j nlimpij(n)=πj
则称该齐次马氏链具有遍历性, π j \pi_j πj为状态 j j j的稳态概率。

定义2

{ X ( n ) , n = 0 , 1 , 2 , …   } \{X(n), n=0,1,2,\dots\} {X(n),n=0,1,2,}为一个齐次马氏链,若存在实数集合 { r j , j ∈ E } \{r_j, j\in E\} {rj,jE}满足
{ r j ≥ 0 j ∈ E ∑ j ∈ E r j = 1 r j = ∑ i ∈ E r i p i j j ∈ E \begin{cases} r_j\geq 0\quad j\in E\\ \sum\limits_{j\in E}r_j=1\\ r_j=\sum\limits_{i\in E}r_i p_{ij}\quad j\in E \end{cases} rj0jEjErj=1rj=iEripijjE
则称 { X ( n ) , n = 0 , 1 , 2 , …   } \{X(n), n=0,1,2,\dots\} {X(n),n=0,1,2,}为一个平稳齐次马氏链, { r j , j ∈ E } \{r_j, j\in E\} {rj,jE}是该过程的一个平稳分布。使用 C − K C-K CK方程反复迭代计算 n n n步转移概率
r j = ∑ i ∈ E r i p i j ( 1 ) = ∑ i ∈ E ( ∑ k ∈ E r k p k i ( 1 ) ) p i j ( 1 ) = ∑ k ∈ E r k ( ∑ i ∈ E p k i ( 1 ) p i j ( 1 ) ) = ∑ k ∈ E r k p k j ( 2 ) = ∑ k ∈ E ( ∑ l ∈ E r l p l k ( 1 ) ) p k j ( 2 ) = ∑ l ∈ E r l p l j ( 3 ) = ⋯ = ∑ i ∈ E r i p i j ( n ) \begin{aligned} r_j&=\sum_{i\in E}r_ip_{ij}^{(1)}=\sum_{i\in E}(\sum_{k\in E}r_kp_{ki}^{(1)})p_{ij}^{(1)}\\ &=\sum_{k\in E}r_k(\sum_{i\in E}p_{ki}^{(1)}p_{ij}^{(1)})\\ &=\sum_{k\in E}r_kp_{kj}^{(2)}\\ &=\sum_{k\in E}(\sum_{l\in E}r_lp_{lk}^{(1)})p_{kj}^{(2)}\\ &=\sum_{l\in E}r_lp_{lj}^{(3)}=\dots=\sum_{i\in E}r_ip_{ij}^{(n)} \end{aligned} rj=iEripij(1)=iE(kErkpki(1))pij(1)=kErk(iEpki(1)pij(1))=kErkpkj(2)=kE(lErlplk(1))pkj(2)=lErlplj(3)==iEripij(n)

定理1

{ X ( n ) , n = 0 , 1 , 2 , …   } \{X(n), n=0,1,2,\dots\} {X(n),n=0,1,2,}是一个平稳齐次马氏链, P ( 0 ) = { p 1 ( 0 ) , p 2 ( 0 ) , … , p j ( 0 ) , …   } P(0)=\{p_1(0), p_2(0), \dots, p_j(0), \dots\} P(0)={p1(0),p2(0),,pj(0),}为其初始分布,如果 P ( 0 ) P(0) P(0) X ( n ) X(n) X(n)的平稳分布时,则对任何 n ≥ 1 n\geq 1 n1,绝对概率等于初始概率,即
p j ( n ) = p j ( 0 ) p_j(n)=p_j(0) pj(n)=pj(0)
{ p i ( 0 ) , i ∈ E } \{p_i(0), i\in E\} {pi(0),iE}为平稳分布时,可以得到
p j ( n ) = ∑ i ∈ E p i ( 0 ) p i j ( n ) = p j ( 0 ) p_j(n)=\sum_{i\in E}p_i(0)p_{ij}^{(n)}=p_j(0) pj(n)=iEpi(0)pij(n)=pj(0)
平稳分布是不因为转移步数变化而变化的分布。

定理2

设齐次马氏链 { X ( n ) , n ≥ 0 } \{X(n), n\geq 0\} {X(n),n0}的状态空间为 E = { 1 , 2 , … , N } E=\{1,2,\dots, N\} E={1,2,,N},如果存在正整数 m m m,使得对任意的 i , j ∈ E i,j\in E i,jE,其 m m m步转移概率均大于 0 0 0,即
p i j ( m ) > 0 i , j ∈ E p_{ij}^{(m)}>0\quad i,j\in E pij(m)>0i,jE
该链具有遍历性,且各状态稳态概率 π j , j ∈ E \pi_j, j\in E πj,jE为方程组 π = π P \pi=\pi P π=πP,即
π j = ∑ i = 1 N π i p i j j = 1 , 2 , … , N \pi_j=\sum_{i=1}^N\pi_ip_{ij}\quad j=1,2,\dots,N πj=i=1Nπipijj=1,2,,N
的唯一解,其中 π j \pi_j πj满足概率分布条件:
π j > 0 j = 1 , 2 , , … , N ∑ j = 1 N π j = 1 \begin{aligned} &\pi_j>0\quad j=1,2,,\dots, N\\ &\sum_{j=1}^N\pi_j=1 \end{aligned} πj>0j=1,2,,,Nj=1Nπj=1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值