1. 理想气体状态方程
在高中,我们学到的理想气体状态方程是:
P V = n R T PV = nRT PV=nRT
其中:
-
P
P
P是气体的压力,
-
V
V
V是气体的体积,
-
n
n
n是气体的物质的量(摩尔数),
-
R
R
R是理想气体常数,
-
T
T
T是气体的温度(绝对温标,单位为开尔文)。
这个方程假设气体分子之间没有相互作用,且分子本身的体积可以忽略不计。它适用于高温低压条件下的气体行为。
2. 引入摩尔体积 V m V_m Vm
为了简化方程,可以定义摩尔体积 V m V_m Vm,即单位摩尔气体所占据的体积:
V m = V n V_m = \frac{V}{n} Vm=nV
代入理想气体状态方程,得到:
P V m = R T P V_m = RT PVm=RT
这个方程描述了单位摩尔气体的行为,不再依赖于物质的量 n n n,只需考虑摩尔体积 V m V_m Vm和压力 P P P之间的关系。
3. 理想气体方程的局限性
理想气体状态方程忽略了两个重要的现实因素:
- 分子间的吸引力:在实际气体中,分子之间存在吸引力(如范德华力)。当分子接近容器壁时,其他分子会对它产生吸引力,导致它对壁的撞击力减小,从而使实际压力比理想气体的压力更低。
- 分子本身的体积:真实气体中的分子本身占据一定的体积,因此可供分子自由运动的体积要比理想气体模型假设的体积更小。
4. 范德华方程的修正
为了修正理想气体方程,使其能够描述真实气体的行为,范德华方程引入了两个修正项:
( P + a V m 2 ) ( V m − b ) = R T \left( P + \frac{a}{V_m^2} \right)(V_m - b) = RT (P+Vm2a)(Vm−b)=RT
其中:
- 修正项 a V m 2 \frac{a}{V_m^2} Vm2a:用来补偿由于分子间吸引力导致的压力降低。实际测量的压力 P P P已经包含了这个吸引力的影响,因此需要加上 a V m 2 \frac{a}{V_m^2} Vm2a来得到理想情况下的压力。
- 修正项 b b b:用来考虑分子本身的排斥体积,即分子本身占据的体积。由于分子占据了一部分空间,实际可用的体积是 V m − b V_m - b Vm−b。
5. 为什么修正项是加号?
你提到的疑问是“分子间吸引力使得实际压力比理想压力低,那么为什么修正项是加号而不是减号?”
这是因为:
- 实际压力 P P P 是已经被分子间吸引力降低的压力。
- 为了得到理想气体的压力(即没有分子间吸引力时的压力),我们需要补偿这个被吸引力削弱的部分。
- 因此,范德华方程中用加号来将 a V m 2 \frac{a}{V_m^2} Vm2a加回去,得到理想情况下的压力。
6. 总结
- 理想气体方程 P V = n R T PV = nRT PV=nRT假设分子之间没有相互作用,适用于高温低压下的气体。
- 引入摩尔体积 V m V_m Vm后,理想气体方程变为 P V m = R T P V_m = RT PVm=RT。
- 范德华方程通过引入两个修正项 a V m 2 \frac{a}{V_m^2} Vm2a和 b b b,考虑了分子间的吸引力和分子本身的体积,给出了更符合真实气体行为的模型。
范德华方程的形式为:
( P + a V m 2 ) ( V m − b ) = R T \left( P + \frac{a}{V_m^2} \right)(V_m - b) = RT (P+Vm2a)(Vm−b)=RT
其中:
- a a a 修正了分子间的吸引力。
- b b b 修正了分子的排斥体积。
通过这两个修正项,范德华方程为气体在低温高压下的行为提供了更准确的描述。