本文来源于《工程热力学 第五版 沈维道等主编》
理想气体的状态方程是:
p v = R g T , p V = m R g T , p V = n R T \mathrm{pv}=\mathrm{R}_{\mathrm{g}} \mathrm{~T},\mathrm{pV}=\mathrm{mR}_{\mathrm{g}} \mathrm{~T},\mathrm{pV}=\mathrm{nRT} pv=Rg T,pV=mRg T,pV=nRT
式中: R g {R}_{g} Rg为气常数, J / ( k g ⋅ k ) \mathrm{J} /(\mathrm{kg} \cdot \mathrm{k}) J/(kg⋅k); R = 8.3145 J / ( k g ⋅ k ) R=8.3145\mathrm{J} /(\mathrm{kg} \cdot \mathrm{k}) R=8.3145J/(kg⋅k),为摩尔气体常数, R = M R g R=M{R}_{g} R=MRg,M为摩尔质量, k J / m o l kJ/mol kJ/mol;p为压力,Pa;T为温度,K;v为比体积, m 3 / k g {m}^{3}/kg m3/kg,V为体积, m 3 {m}^{3} m3;m为质量,kg;n为物质的量,mol, m = n M m=nM m=nM。
一、理想气体模型
气态物质的分子持续不断地做无规则的热运动,分子数目又如此的巨大,若不计恒力场(如重力场等)作用,运动在任何一个方向上都没有显著得优势,宏观上表现为各向同性,压力各处各向相同,密度一致。自然界中得气体分子本身有一定得体积,分子相互间存在作用力,分子在两次碰撞之间进行得是非直线运动,很难精确描述和确定其复杂得运动,为了方便分析、简化计算,引出了理想气体得概念。
理想气体是一种实际上不存在的假想气体,其分子是些弹性的、不具体积的质点;分子间相互没有作用力。在这两点假设条件下,气体分子的运动规律极大地简化了。对此简化了的物理模型,不但可定性地分析气体的某些热力学现象,而且可定量地导出物理状态参数间存在的简单函数关系。
众所周知,高温低压的气体密度小、比体积大,若气体分子本身体积远小于其活动空间,分子间平均距离又很大,使分子间作用力极其微弱,气体的状态就很接近理想气体。因此,理想气体是气体压力趋近于零(p→0)、比体积趋近于无穷大(v→∞)时的极限状态。一般来说,氩、氖、氦、氢、氧、氮、一氧化碳等的临界温度低的单原子或双原子气体,在温度不太低、压力不太高时均远离液态,接近理想气体假设条件。因而,工程中常用的氧气、氦气、氢气、一氧化碳等及其混合气体,如空气、燃气、烟气等工质,在常温常压下都可作为理想气体处理,误差一般都在工程计算允许的精度范围之内。如空气在室温下压力达10MPa时,按理想气体状态方程计算的比体积误差在1%左右。
不符合上述两点假设的气态物质称为实际气体。火力发电厂动力装置中采用的水蒸气、制冷装置的工质氟利昂蒸汽、氨蒸汽等,这类物质临界温度较高,蒸汽在通常的工作温度和压力下离液态不远,不能看作理想气体。通常蒸汽的比体积较原理液态的气体的比体积小得多,分子本身体积不容忽略,分子间内聚力随平均距离减小又急剧增大,因而分子运动规律极其复杂,宏观上反映为状态参数的函数关系式繁复,热工计算中需要借助于计算机或利用为各种蒸汽专门编制的图或表。
地球大气中含有的少量水蒸气及燃气、烟气中含有的水蒸气和二氧化碳等,因分子浓度低,分压力甚小,在这些混合物的温度不太低时,仍可视作理想气体。
二、理想气体状态方程式
根据分子运动论,对理想气体分子运动物理模型,用统计方法得出的气体的压力为:
p = 2 3 N m ′ c 2 2 ( 1 ) p=\frac {2} {3}N\frac {
{m}^{'}{c}^{2}} {2} (1) p=32N2m′c2(1)
式中:N为1 m 3 {m}^{3} m3体积内的分子数; m ′ {m}^{'} m′为每个分子的质量, c c c为分子平移运动的均方根速度,因此 N × m ′ c 2 2 N\times \frac {
{m}^{'}{c}^{2}} {2} N×2