大数模板+Polya定理
Count the Tetris
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2681 Accepted Submission(s): 752
Problem Description
话说就是因为这个游戏,Lele已经变成一个名人,每当他一出现在公共场合,就有无数人找他签名,挑战。
为了防止引起社会的骚动,Lele决定还是乖乖呆在家里。
在家很无聊,Lele可不想像其他人一样每天没事在家数钱玩,于是他就开始数棋盘。他想知道,一个有N×N个格子的正方形棋盘,每个格子可以用C种不同颜色来染色,一共可以得到多少种不同的棋盘。如果一个棋盘,经过任意旋转,反射后变成另一个棋盘,这两个棋盘就是属于同一种棋盘。
比如当N=C=2的时候,有下面六种不同的棋盘
现在告诉你N和C,请你帮帮Lele算算,到底有多少种不同的棋盘
为了防止引起社会的骚动,Lele决定还是乖乖呆在家里。
在家很无聊,Lele可不想像其他人一样每天没事在家数钱玩,于是他就开始数棋盘。他想知道,一个有N×N个格子的正方形棋盘,每个格子可以用C种不同颜色来染色,一共可以得到多少种不同的棋盘。如果一个棋盘,经过任意旋转,反射后变成另一个棋盘,这两个棋盘就是属于同一种棋盘。
比如当N=C=2的时候,有下面六种不同的棋盘
现在告诉你N和C,请你帮帮Lele算算,到底有多少种不同的棋盘
Input
本题目包含多组测试,请处理到文件结束。
每组测试数据包含两个正整数N和C(0<N,C,<31),分别表示棋盘的大小是N×N,用C种颜色来进行染色。
每组测试数据包含两个正整数N和C(0<N,C,<31),分别表示棋盘的大小是N×N,用C种颜色来进行染色。
Output
对于每组测试,在一行里输出答案。
Sample Input
2 2 3 1
Sample Output
6 1
Author
linle
#include"bits/stdc++.h"
using namespace std;
typedef unsigned long long LL;
const int MX = 355;
const int MAXN = 9999;
const int DLEN = 4;
class Big
{
public:
int a[MX], len;
Big(const int b = 0)
{
int c, d = b;
len = 0;
memset(a, 0, sizeof(a));
while(d > MAXN)
{
c = d - (d / (MAXN + 1)) * (MAXN + 1);
d = d / (MAXN + 1);
a[len++] = c;
}
a[len++] = d;
}
Big(const char *s)
{
int t, k, index, L, i;
memset(a, 0, sizeof(a));
L = strlen(s);
len = L / DLEN;
if(L % DLEN) len++;
index = 0;
for(i = L - 1; i >= 0; i -= DLEN)
{
t = 0;
k = i - DLEN + 1;
if(k < 0) k = 0;
for(int j = k; j <= i; j++)
{
t = t * 10 + s[j] - '0';
}
a[index++] = t;
}
}
Big operator/(const int &b)const
{
Big ret;
int i, down = 0;
for(int i = len - 1; i >= 0; i--)
{
ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
}
ret.len = len;
while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--;
return ret;
}
bool operator>(const Big &T)const
{
int ln;
if(len > T.len) return true;
else if(len == T.len)
{
ln = len - 1;
while(a[ln] == T.a[ln] && ln >= 0) ln--;
if(ln >= 0 && a[ln] > T.a[ln]) return true;
else return false;
}
else return false;
}
Big operator+(const Big &T)const
{
Big t(*this);
int i, big;
big = T.len > len ? T.len : len;
for(i = 0; i < big; i++)
{
t.a[i] += T.a[i];
if(t.a[i] > MAXN)
{
t.a[i + 1]++;
t.a[i] -= MAXN + 1;
}
}
if(t.a[big] != 0) t.len = big + 1;
else t.len = big;
return t;
}
Big operator-(const Big &T)const
{
int i, j, big;
bool flag;
Big t1, t2;
if(*this > T)
{
t1 = *this;
t2 = T;
flag = 0;
}
else
{
t1 = T;
t2 = *this;
flag = 1;
}
big = t1.len;
for(i = 0; i < big; i++)
{
if(t1.a[i] < t2.a[i])
{
j = i + 1;
while(t1.a[j] == 0) j++;
t1.a[j--]--;
while(j > i) t1.a[j--] += MAXN;
t1.a[i] += MAXN + 1 - t2.a[i];
}
else t1.a[i] -= t2.a[i];
}
t1.len = big;
while(t1.a[t1.len - 1] == 0 && t1.len > 1)
{
t1.len--;
big--;
}
if(flag) t1.a[big - 1] = 0 - t1.a[big - 1];
return t1;
}
int operator%(const int &b)const
{
int i, d = 0;
for(int i = len - 1; i >= 0; i--)
{
d = ((d * (MAXN + 1)) % b + a[i]) % b;
}
return d;
}
Big operator*(const Big &T) const
{
Big ret;
int i, j, up, temp, temp1;
for(i = 0; i < len; i++)
{
up = 0;
for(j = 0; j < T.len; j++)
{
temp = a[i] * T.a[j] + ret.a[i + j] + up;
if(temp > MAXN)
{
temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
up = temp / (MAXN + 1);
ret.a[i + j] = temp1;
}
else
{
up = 0;
ret.a[i + j] = temp;
}
}
if(up != 0)
{
ret.a[i + j] = up;
}
}
ret.len = i + j;
while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--;
return ret;
}
void print()
{
printf("%d", a[len - 1]);
for(int i = len - 2; i >= 0; i--) printf("%04d", a[i]);
}
};
Big ans,ret;
void work(int m,int nn){
Big a = m;
while(nn){
if(nn&1) ret = ret*a;
a = a*a;
nn >>= 1;
}
ans = ans+ret;
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
ans = 0;
int nn = n*n;
ret = 1;
work(m,nn);
if(n&1){
ret = 2;
work(m,nn/4+1);
ret = 1;
work(m,nn/2+1);
ret = 4;
work(m,n+(nn-n)/2);
}
else{
ret = 2;
work(m,nn/4);
ret = 3;
work(m,nn/2);
ret = 2;
work(m,n+(nn-n)/2);
}
ans = ans/8;
ans.print();
puts("");
}
return 0;
}