- 博客(98)
- 资源 (8)
- 收藏
- 关注
原创 根据方法名称动态调用方法
主要通过Java反射机制实现。import com.alibaba.fastjson.JSON;import lombok.extern.slf4j.Slf4j;import org.apache.commons.lang3.StringUtils;@Slf4jpublic class NewClass { private static final NewClass newClass = new NewClass(); public String doTest(String m
2022-02-24 15:36:02 947
原创 MySQL查询异常 — Illegal mix of collations
select *from activity_person person left join activity_info info on info.serial_num = person.serial_num;Illegal mix of collations (utf8mb4_general_ci,IMPLICIT) and (utf8mb4_unicode_ci,IMPLICIT) for operation '='查询语句中,,如上异常为两个表的编码格式不同,导致同为varc
2022-02-08 11:01:00 2016
原创 分布式事务
文章目录1 事务简介2 本地事务3 分布式事务典型场景3.1 跨库事务3.2 分库分表3.3 服务化(SOA,Service-Oriented Architecture)4 DTP模型4.1 DTP模型元素4.2 DTP模型实例(Instance of the Model)4.3 事务管理器作用域 (TM domain)4.4 全局事务树形结构(Global Transaction Tree Structure)5 刚性事务5.1 ACID理论5.2 XA规范5.2.1 两阶段提交协议(2PC)5.2.2
2021-01-21 20:38:34 1052 3
原创 MySQL锁
文章目录为什么需要锁锁的基本原理锁的类型行级锁表级锁意向锁自增锁锁的算法记录锁间隙锁临键锁锁问题脏读不可重复读丢失更新为什么需要锁锁机制用于管理对共享资源的并发访问。锁不仅是数据库事务实现不同级别隔离性的手段,由其带来的所冲突也是影响数据库并发访问性能的一个重要因素。MyISAM是表级锁,并发读没有问题,但并发插入性能较差。Microsoft SQL Server数据库,在2005版本之前都是页锁,相对MyISAM并发性能有所提升,但对于热点数据页的并发问题依然无能为力。InnoDB
2021-01-17 21:12:45 2098 6
原创 MySQL事务
文章目录事务的定义事务的特性事务的隔离性读并发问题脏读不可重复读幻读隔离级别如何实现隔离级别读未提交读已提交可重复读串行化事务的一致性基本概念事务的原子性、持久性基本概念本文主要针对MySQL数据库常用的InnoDB存储引擎进行说明。事务的定义《Datebase System Concepts》: 构成单一逻辑工作单元的操作集合《An Introduction to Database System》: 事务是一个逻辑工作单元《MySQL 技术内幕:InnoDB存储引擎》:事务是访问并更
2021-01-17 21:01:12 422
原创 Spring事务
文章目录事务的基本特性Spring事务管理方式编程式事务管理声明式事务管理基于注解的实现基于XML的实现事务注解注解说明事务传播机制事务失效场景事务代理Spring事务的本质是,封装数据库事务,而数据库事务的本质则是基于数据库锁实现指定隔离级别的事务。事务的基本特性原子性(Atomicity): 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;一致性(Aonsistency): 执行事务前后,数据保持一致;隔离性(Isolation): 并发访问数
2021-01-17 20:48:41 303
原创 设计模式总结
六大设计原则原则英文含义说明作用单一职责原则Single Responsibility Principle一个类应该只有一个发生变化的原因。一个类仅承担一种职责。类复杂度低、可读性强、易维护。开闭原则Open Closed Principle一个软件实体,如类、模块和函数应该对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。扩展性强、易于维护和升级。里式替换原则Liskov Substitution Pri
2020-12-07 10:40:50 173
原创 行为型设计模式
文章目录观察者模式实现方式1. 同步阻塞2. 异步非阻塞3. 跨进程模板模式作用一:复用实例一:Java InputStream实例二:Java AbstractList作用二:扩展实例一:Java Servlet实例二:JUnit TestCase策略模式定义创建使用避免分支逻辑总结职责链模式作用1. 降低复杂性2. 提升可扩展性应用场景消息敏感词检查用户登录校验状态模式有限状态机实现方式1. 分支逻辑法2. 查表法3. 状态模式应用场景1. 分支逻辑法2. 查表法3. 状态模式迭代器模式实现迭代器优势常
2020-11-04 11:28:33 1352 2
原创 结构型设计模式
文章目录代理模式实现方式1. 静态代理2. 动态代理应用场景1. 业务系统的非功能性需求开发2. 代理模式在RPC、缓存中的应用桥接模式装饰器模式适配器模式实现方式1. 类适配器2. 对象适配器应用场景1. 封装有缺陷的接口设计2. 统一多个类的接口设计3. 替换依赖的外部系统4. 兼容老版本接口5. 适配不同格式的数据门面模式应用场景1. 解决易用性问题2. 解决性能问题3. 解决分布式事务问题总结组合模式享元模式实现方式举例1. 棋牌问题2. 爬楼梯问题享元模式 vs 单例、缓存、对象池1. 单例2.
2020-11-04 11:22:01 784
原创 创建型设计模式
文章目录单例模式案例1. 处理资源访问冲突2. 表示全局唯一类实现方式1. 饿汉式2. 懒汉式3. 双重校验锁4. 静态内部类5. 枚举存在哪些问题?1. 单例对OOP特性的支持不友好2. 单例对隐藏类之间的依赖关系3. 单例对代码的扩展性不友好4. 单例对代码的可测试性不友好5. 单例不支持有参数的构造函数替代解决方案?工厂模式简单工厂(Simple Factory)工厂方法(Factory Method)抽象工厂(Abstract Factory)应用场景简单工厂工厂方法抽象工厂建造者模式应用场景原型模
2020-11-04 11:20:05 593
原创 单例模式中存在的安全问题
线程安全问题双重校验锁public class Singleton { private static Singleton instance = null; // 私有构造函数 private Singleton() {} public static Singleton getInstance() { if (instance == null) { synchronized (Singleton.class) {
2020-11-04 11:17:11 747
原创 数据增强方法及代码
文章目录参考链接摘要什么是数据增强空间几何变换类翻转(Flip)裁剪(crop)旋转(rotate)缩放变形(scale)平移变换(shift)颜色变换类噪声变换类其他图像标准化遮挡实例AlexNetYOLO参考链接【技术综述】一文道尽深度学习中的数据增强方法(上) - 简书https://www.jianshu.com/p/99450dbdadcf【技术综述】一文道尽深度学习中的数据增强...
2019-07-06 16:27:57 20916 10
原创 解决plt.title无法显示中文的问题
在最前边设置这两条属性即可#解决中文显示问题plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus'] = False
2019-07-06 15:03:14 18534 5
转载 softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy
转自:损失函数softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy之间的区别与联系cross_entropy-----交叉熵是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。在介绍softmax_cross_entropy,binary_cross_entropy、sigmoid_cross_entropy...
2019-06-29 10:56:39 1512
原创 tensorflow中的dataset
先记录一下读tfrecord的方式def parser(record, shape=[224, 224, 1]): features = tf.parse_single_example(record, features={ 'label': tf.FixedLenFeature([], tf.int64), 'img': tf.FixedLenFeatur...
2019-06-28 10:18:50 865
原创 python 单通道转3通道,tensorflow灰度图转RGB图
import numpy as npwith tf.Session(): image, label = sess.run(next_batch) # batch_size=1 print(image.shape) # [224, 224, 1] image = np.concatenate((image, image, image), axis=-1) print(image.shap...
2019-06-27 14:40:34 13468 8
原创 numpy导出csv取消科学计数法
取消程序内的科学计数法import numpy as npnp.set_printoptions(suppress=True)取消导出csv的科学计数法在数字数据后加入看不见的字符,numpy就不会把它识别程数字,也就不会用科学计数法去展示了。但是呢,我觉得这样做非常麻烦,然后我选择,常规保存,然后到csv文件中去改。双击打开CSV文件,一般是用Excel默认打开注意最右的科学计...
2019-06-22 11:09:32 3284
转载 轻量化神经网络架构
转自:https://www.jiqizhixin.com/articles/2018-01-08-6本文就近年提出的四个轻量化模型进行学习和对比,四个模型分别是:SqueezeNet、MobileNet、ShuffleNet、Xception。目录一、引言 二、轻量化模型 2.1 SqueezeNet 2.2 Mobi...
2019-06-21 11:09:41 3596 1
转载 Attention机制【图像】
转自:https://blog.csdn.net/weixin_41923961/article/details/81516589文章目录1. 什么是Attention机制?2. Attention机制应用在了哪些地方?2.1 方式一:学习权重分布2.2 方式二:任务聚焦/解耦3.感想4参考资料1. 什么是Attention机制?其实我没有找到attention的具体定义,但在计算机视觉...
2019-06-20 16:05:25 1460 3
转载 目标检测论文库
转自:https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html Object Detection Published: 09 Oct 2015 Category: de...
2019-06-20 14:24:43 2690
转载 SENet与SKNet详解
转自:https://blog.csdn.net/qixutuo6087/article/details/88822428文章目录0.摘要1.引入2.SE-Net结构2.1 Sequeeze:Global Information Embedding2.2 Excitation: Adaptive Recalibration2.3 Scale3.SE模块嵌入实例4.SENet Experimen...
2019-06-20 12:11:46 2882
转载 残差网络ResNet
转自:https://blog.csdn.net/loveliuzz/article/details/79080194上图中是用5个残差块连接在一起构成的残差网络,用梯度下降算法训练一个神经网络,若没有残差,会发现随着网络加深,训练误差先减少后增加,理论上训练误差越来越小比较好。而对于残差网络来讲,随着层数增加,训练误差越来越减小,这种方式能够到达网络更深层,有助于解决梯度消失和梯度爆炸的...
2019-06-20 11:55:59 565
转载 GoogLeNet
转自:https://blog.csdn.net/loveliuzz/article/details/79080194文章目录综述Inception模块介绍GoogLeNet介绍1、GoogLeNet——Inception V1结构2、Inception V2结构3、Inception V3结构4、Inception V4结构,它结合了残差神经网络ResNet。综述获得高质量模型最保险的做...
2019-06-20 11:50:13 1014
转载 VGG Net
转自:https://blog.csdn.net/loveliuzz/article/details/79080194VGGNet是牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发的深度卷积神经网络。VGGNet探索了卷积神经网络的深度与其性能之间的关系,通过反复堆叠33的小型卷积核和22的最大池化层,VGGNet成功...
2019-06-20 11:38:11 229
转载 benchmark和baseline的区别和联系
作者:爱上北方的冷冬原文:https://blog.csdn.net/alawaka2018/article/details/80329026baseline: a standard measurement or fact against which other measurements or facts are compared, especially in medicine or sci...
2019-06-13 23:50:43 3013
原创 支持向量机SVM代码示例
Tensorflow代码来源:https://www.cnblogs.com/vipyoumay/p/7560061.html本人新添加了很多注释,方便理解代码我一直想将这个代码用于多维特征的二分类,看了挺长时间。添加多维特征,对于SVM结构定义的影响就是,x_data、A的维度要对应到特征的维度。对于求解斜率,多维的A生成多维元素,在下还未彻底理解SMO算法的多维求解方案,所以没有深究...
2019-06-13 21:44:40 865
转载 卷积的三种模式:full, same, valid
作者:木盏原文:https://blog.csdn.net/leviopku/article/details/80327478通常用外部api进行卷积的时候,会面临mode选择。本文清晰展示三种模式的不同之处,其实这三种不同模式是对卷积核移动范围的不同限制。设 image的大小是7x7,filter的大小是3x31,full mode橙色部分为image, 蓝色部分为filter。...
2019-06-11 22:05:27 1359
原创 Batch Normalization
Batch Normalization参考:https://blog.csdn.net/leviopku/article/details/83109422https://www.cnblogs.com/skyfsm/p/8453498.htmlTitleBatch Normalization: Accelerating Deep Network Training by Reducing ...
2019-06-11 21:42:33 162
原创 AlexNet
AlexNetAlexNet参考链接LRN参考链接TitleImageNet Classification with Deep Convolutional Neural NetworksLinkhttp://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks....
2019-06-05 20:45:42 160
原创 支持向量机(SVM)
文章目录间隔和支持向量线性可分超平面支持向量SVM的最优化问题对偶问题求解最优化问题理解对偶问题什么是对偶问题KKT约束条件求解SVM优化问题软间隔软间隔的提出软间隔的SVM最优化问题核函数非线性SVM核函数求解非线性SVM常用的核函数线性核函数多项式核函数RBF核(Radial Basis Function Kernel)附录SMO算法拉格朗日对偶问题SUP、INFKKT间隔函数间隔几何间隔几何...
2019-06-05 16:48:50 307
转载 综述论文:当前深度神经网络模型压缩和加速方法速览
来源:https://www.jiqizhixin.com/articles/2017-10-29本文全面概述了深度神经网络的压缩方法,主要可分为参数修剪与共享、低秩分解、迁移/压缩卷积滤波器和知识精炼,本论文对每一类方法的性能、相关应用、优势和缺陷等进行独到的分析。机器之心简要介绍了该论文,更详细的内容请查看原论文。文章目录介绍参数修剪和共享A. 量化和二进制化B. 剪枝和共享C. 设计...
2019-06-05 10:11:44 743
原创 YOLO系列改进
来源详解YOLO v1BACKBONEGoogleNet缺陷输入图像必须是固定尺寸输出层是全连接层每个网格只输出一个类别训练依赖于物体标注,泛化能力差。IoU是通过,分类结果对应训练集的bb,以及预测的bb做运算。小目标鲁棒性差。下采样层多,物体特征不够精细YOLO v2BACKBONEDarknet-19改进Batch Nor...
2019-06-04 19:44:59 2910
转载 YOLO系列详解
来源:目标检测—YOLO v1,v2,v3文章目录YOLO v1YOLO的核心思想YOLO的实现方法YOLO的实现细节YOLO的缺点YOLO9000 YOLOv2摘要简介BETTERFasterStronger总结YOLO v3改进之处多尺度预测YOLO v.s Faster R-CNNYOLO v1这是继RCNN,fast-RCNN和faster-RCNN之后,rbg(RossGirshi...
2019-06-04 16:42:30 11494
转载 CSDN如何快速转载文章
龙云尧个人博客,转载请注明出处。CSDN地址:http://blog.csdn.net/michael753951/article/details/70307704个人blog地址:http://yaoyl.cn/csdn_ru_he_zhuan_zai/本来我一直不会在csdn中转载他人的文章的,知道有一次在网上看到一篇教程(来源已经忘记...
2019-06-04 16:19:41 105
转载 目标检测模型的性能评估--MAP(Mean Average Precision)
转自:目标检测模型的性能评估–MAP(Mean Average Precision)目标检测模型中性能评估的几个重要参数有精确度,精确度和召回率。本文中我们将讨论一个常用的度量指标:均值平均精度,即MAP。在二元分类中,精确度和召回率是一个简单直观的统计量,但是在目标检测中有所不同的是及时我们的物体检测器在图像中检测到物体,如果我们仍无法找到它所在的图像中的哪个位置也是无用的。由于我们需要预测...
2019-06-04 15:25:27 1017
转载 主成分分析(PCA)详解
来源:https://blog.csdn.net/Mbx8X9u/article/details/78613444前言主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结。PCA基本思想PCA,主...
2019-05-30 15:36:09 3228 1
转载 线性判别分析(LDA)原理详解
来源:https://blog.csdn.net/mbx8x9u/article/details/78739908在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来。在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题模型。本文只讨论线性判别分析,因此后面所有的LDA均指线性判别分析。LDA思想...
2019-05-30 15:00:25 2033
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人