主成分分析(PCA)详解

来源:https://blog.csdn.net/Mbx8X9u/article/details/78613444

前言

主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。

在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。

一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结。

PCA基本思想

PCA,主成分分析,顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据。

具体的,假如我们的数据集是n维的,共有m个数据(x(1),x(2),…,x(m))。希望将这m个数据的维度从n维降到n’维,希望这m个n’维的数据集尽可能的代表原始数据集。我们知道数据从n维降到n’维肯定会有损失,但是我们希望损失尽可能的小。

那么如何让这n’维的数据尽可能表示原来的数据呢?

先看看最简单的情况,也就是n=2,n’=1,也就是将数据从二维降维到一维。

数据如下图。我们希望找到某一个维度方向,它可以代表这两个维度的数据。图中列了两个向量方向,u1和u2,那么哪个向量可以更好的代表原始数据集呢?

从直观上也可以看出,u1比u2好。

640?wx_fmt=png&wxfrom=5&wx_lazy=1

为什么u1比u2好呢?

可以有两种解释

  1. 第一种解释是样本点到这个直线的距离足够近
  2. 第二种解释是样本点在这个直线上的投影能尽可能的分开。

基于上面的两种标准,我们可以得到PCA的两种等价推导

基于最近重构性

0?wx_fmt=png
0?wx_fmt=png

基于最大可分性

0?wx_fmt=png
0?wx_fmt=png

PCA算法流程

从上面两节我们可以看出,求样本x(i)的n’维的主成分。其实就是求样本集的协方差矩阵的前n’个特征值对应特征向量矩阵W,然后对于每个样本x(i),做如下变换z(i)=WTx(i),即达到降维的PCA目的。

算法流程

  • 输入:n维样本集D=(x(1),x(2),…,x(m)),要降维到的维数n’.

  • 输出:降维后的样本集D"

  1. 对所有的样本进行中心化:
    x ( i ) = x ( i ) − 1 m ∑ j = 1 m x ( j ) 计 算 样 本 的 协 方 差 矩 阵 x^{(i)}=x^{(i)}-\frac 1m\sum_{j=1}^mx^{(j)}计算样本的协方差矩阵 x(i)=x(i)m1j=1mx(j)

  2. 计算样本的协方差矩阵

  3. 对矩阵XXT进行特征值分解

  4. 取出最大的n’个特征值对应的特征向量(w1,w2,…,wn′), 将所有的特征向量标准化后,组成特征向量矩阵W

  5. 对样本集中的每一个样本x(i),转化为新的样本

  6. 降维后的样本集D

有时候,我们不指定降维后的n’的值,而是换种方式,指定一个降维到的主成分比重阈值t。这个阈值t在(0,1]之间。假如我们的n个特征值为λ1≥λ2≥…≥λn,则n’可以通过下式得到:
∑ i = 1 n ‘ λ i ∑ i = 1 n λ i ≥ t \frac {\sum_{i=1}^{n^`}\lambda_i}{\sum_{i=1}^{n}\lambda_i}\ge t i=1nλii=1nλit

PCA实例

下面举一个简单的例子,说明PCA的过程。

假设我们的数据集有10个二维数据

(2.5,2.4), (0.5,0.7), (2.2,2.9), (1.9,2.2), (3.1,3.0), (2.3, 2.7), (2, 1.6), (1, 1.1), (1.5, 1.6), (1.1, 0.9)

需要用PCA降到1维特征。

首先我们对样本中心化,这里样本的均值为(1.81, 1.91)

所有的样本减去这个均值后,即中心化后的数据集为(0.69, 0.49), (-1.31, -1.21), (0.39, 0.99), (0.09, 0.29), (1.29, 1.09), (0.49, 0.79), (0.19, -0.31), (-0.81, -0.81), (-0.31, -0.31), (-0.71, -1.01)

现在我们开始求样本的协方差矩阵,由于我们是二维的,则协方差矩阵为:
X X T = ( c o v ( x 1 , x 1 ) c o v ( x 1 , x 2 ) c o v ( x 2 , x 1 ) c o v ( x 2 , x 2 ) ) XX^T=\begin{pmatrix}cov(x_1,x_1) & cov(x_1,x_2) \\ cov(x_2,x_1) & cov(x_2,x_2)\\ \end{pmatrix} XXT=(cov(x1,x1)cov(x2,x1)cov(x1,x2)cov(x2,x2))
对于我们的数据,求出协方差矩阵为:
X X T = ( 0.616555556 0.615444444 0.615444444 0.716555556 ) XX^T=\begin{pmatrix}0.616555556 & 0.615444444 \\ 0.615444444 & 0.716555556\\ \end{pmatrix} XXT=(0.6165555560.6154444440.6154444440.716555556)
求出特征值为(0.490833989, 1.28402771)

对应的特征向量分别为:(0.735178656,0.677873399)T(−0.677873399,−0.735178656)T

由于最大的k=1个特征值为1.28402771,对于的k=1个特征向量为(−0.677873399,−0.735178656)T

则我们的W=(−0.677873399,−0.735178656)T

我们对所有的数据集进行投影z(i)=WTx(i),得到PCA降维后的10个一维数据集为:

(-0.827970186,1.77758033, -0.992197494, -0.274210416, -1.67580142, -0.912949103, 0.0991094375, 1.14457216, 0.438046137, 1.22382056)

PCA算法总结

作为一个非监督学习的降维方法,它只需要特征值分解,就可以对数据进行压缩,去噪。

因此在实际场景应用很广泛。为了克服PCA的一些缺点,出现了很多PCA的变种,比如为解决非线性降维的KPCA,还有解决内存限制的增量PCA方法Incremental PCA,以及解决稀疏数据降维的PCA方法Sparse PCA等。

优点

1)仅仅需要以方差衡量信息量,不受数据集以外的因素影响。

2)各主成分之间正交,可消除原始数据成分间的相互影响的因素。

3)计算方法简单,主要运算是特征值分解,易于实现。

缺点

1)主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。

2)方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值