题目:输入M行N列的二维数组,只能是1或者0,从左下角到右上角去,只能往右、往左或往右上走,且不能去0的地方,输入M和N,然后输入M行N列,输出一共有多少种走法。
样例输入:
3 3
1 1 1
1 0 1
1 1 1
输出4
输入:
3 3
1 1 1
1 1 1
1 1 1
输出13
解题思路:
这种题目和和尚挑水问题很像,和八皇后问题类似,都需要用到回溯法,就是要用递归来做。我这里从右上角往左下角找(结果是一样的,按相反方向找),如果遇到1值,就从其三个方向继续找,找到符号的count值就加一,最后输出总的count值。
具体程序如下:
#include <iostream>
using namespace std;
int count;
void getNum(int **num,int m,int n,int a,int b){
if(m>=a || n>=b) return ;
if(m==0 || n==0) count++;
else if(m>0 && n>0 && m<a && n<b){
if(num[m][n]==1){
//一开始我想将遍历过的点置0,之后再置1,后来想想发现没必要,
//因为其寻找是从其后面的开始的,不会再回过头来找,不过结果是一样的
//num[m][n]=0;
getNum(num,m-1,n,a,b);
//num[m][n]=1;
getNum(num,m,n-1,a,b);
//num[m][n]=1;
getNum(num,m-1,n-1,a,b);
//num[m][n]=1;
}
}
}
int main(){
int m,n;
cin>>m>>n;
int **num=new int*[m];
for(int i=0;i<m;i++)
num[i]=new int[n];
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
cin>>num[i][j];
}
}
getNum(num,m-1,n-1,m,n);
cout<<count<<endl;
for(int i=0;i<m;i++)
delete num[i];
delete[] num;
return 0;
}
如果有错误,希望指正