OOP(面向对象)的四个基本特征

面向对象(OOP)的基本特征

  面向对象技术是目前流行的系统设计开发技术,它包括面向对象分析和面向对象程序设计。面向对象程序设计技术的提出,主要是为了解决传统程序设计方法——结构化程序设计所不能解决的代码重用问题。

  面向对象的编程方法具有四个基本特征:

1.抽象:

  抽象就是忽略一个主题中与当前目标无关的那些方面,以便更充分地注意与当前目标有关的方面。抽象并不打算了解全部问题,而只是选择其中的一部分,暂时不用部分细节。比如,我们要设计一个学生成绩管理系统,考察学生这个对象时,我们只关心他的班级、学号、成绩等,而不用去关心他的身高、体重这些信息。抽象包括两个方面,一是过程抽象,二是数据抽象。过程抽象是指任何一个明确定义功能的操作都可被使用者看作单个的实体看待,尽管这个操作实际上可能由一系列更低级的操作来完成。数据抽象定义了数据类型和施加于该类型对象上的操作,并限定了对象的值只能通过使用这些操作修改和观察。

2.继承:  继承是一种联结类的层次模型,并且允许和鼓励类的重用,它提供了一种明确表述共性的方法。对象的一个新类可以从现有的类中派生,这个过程称为类继承。新类继承了原始类的特性,新类称为原始类的派生类(子类),而原始类称为新类的基类(父类)。派生类可以从它的基类那里继承方法和实例变量,并且类可以修改或增加新的方法使之更适合特殊的需要。这也体现了大自然中一般与特殊的关系。继承性很好的解决了软件的可重用性问题。比如说,所有的Windows应用程序都有一个窗口,它们可以看作都是从一个窗口类派生出来的。但是有的应用程序用于文字处理,有的应用程序用于绘图,这是由于派生出了不同的子类,各个子类添加了不同的特性。

3.封装:

  封装是面向对象的特征之一,是对象和类概念的主要特性。封装是把过程和数据包围起来,对数据的访问只能通过已定义的界面。面向对象计算始于这个基本概念,即现实世界可以被描绘成一系列完全自治、封装的对象,这些对象通过一个受保护的接口访问其他对象。一旦定义了一个对象的特性,则有必要决定这些特性的可见性,即哪些特性对外部世界是可见的,哪些特性用于表示内部状态。在这个阶段定义对象的接口。通常,应禁止直接访问一个对象的实际表示,而应通过操作接口访问对象,这称为信息隐藏。事实上,信息隐藏是用户对封装性的认识,封装则为信息隐藏提供支持。封装保证了模块具有较好的独立性,使得程序维护修改较为容易。对应用程序的修改仅限于类的内部,因而可以将应用程序修改带来的影响减少到最低限度。

4. 多态性:

  多态性是指允许不同类的对象对同一消息作出响应。比如同样的加法,把两个时间加在一起和把两个整数加在一起肯定完全不同。又比如,同样的选择编辑-粘贴操作,在字处理程序和绘图程序中有不同的效果。多态性包括参数化多态性和包含多态性。多态性语言具有灵活、抽象、行为共享、代码共享的优势,很好的解决了应用程序函数同名问题。

面向对象程序设计优点:

1、开发时间短,效率高,可靠性高,所开发的程序更强壮。由于面向对象编程的可重用性,可以在应用程序中大量采用成熟的类库,从而缩短了开发时间。

2、应用程序更易于维护、更新和升级。继承和封装使得应用程序的修改带来的影响更加局部化。
  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: sdut-oop-8 分数四则运算(类和对象)是一道面向对象编程的题目,要求实现分数的加减乘除四则运算。具体实现方式是通过定义一个分数类,包含分子和分母两个属性,以及加减乘除四个方法,实现分数的四则运算。在使用时,需要创建分数对象,调用相应的方法进行运算。这道题目考察了面向对象编程的基本概念和实现方法,对于提高编程能力和理解面向对象编程思想有很大的帮助。 ### 回答2: 分数四则运算是中学数学中一个非常常见且重要的知识点。在程序开发中,我们也需要实现分数的四则运算。本题要求我们使用面向对象的思想来设计实现一个分数类,能够支持分数的加、减、乘、除等运算。 首先,我们可以定义一个Fraction类,其中包含分子numerator和分母denominator两个成员变量,以及足够的构造函数、析构函数和成员函数,来分别实现加、减、乘、除等操作。 在分数加法操作中,我们需要将两个分数的分子分母求最小公倍数,然后将两个数的分子乘以公倍数再相加,最后将结果分子分母同时约分即可。在分数减法和乘法操作中,可以采用类似的方法。而在除法操作中,我们需要将除数转化成倒数,然后进行分数乘法操作,最后还要注意特殊情况(如除数为0)的处理。 除了上述基本的四则运算,我们还可以在Fraction类中加入其他的成员函数,如约分、比较大小、转换为小数等。为了保证程序的健壮性,我们还可以加入一些异常处理机制,如除数为0时抛出异常,分子或分母为负数时修复符号等。 最后,在使用Fraction类进行分数四则运算时,我们需要注意运算符重载的使用。这样既方便了程序员的操作,也使得程序的可读性和可维护性更高。 综上所述,分数四则运算的实现需要考虑到各种特殊情况,并采用面向对象的思想,合理设计类的成员函数和运算符重载,从而实现分数的加、减、乘、除等操作。 ### 回答3: 题目描述: 编写程序实现分数的四则运算,包括加、减、乘、除。每个分数由分子和分母两部分组成,分数的运算结果应该以最简分数形式输出。 思路: 首先需要定义一个Fraction类,其中包括分子和分母两个成员变量,以及相应的构造函数、成员函数和友元函数。 构造函数需要初始化分子和分母,默认为1和1,可以通过传入分子和分母的值来实现初始化。 成员函数需要实现分数的加、减、乘、除运算,以及求最大公约数的函数。具体实现方法如下: 加法运算:将两个分数的分子分母通分后相加,再将结果化简为最简分数。 减法运算:将两个分数转化为同分母后相减,再将结果化简为最简分数。 乘法运算:将两个分数的分子相乘,分母相乘,再将结果化简为最简分数。 除法运算:将除数取倒数后再与被除数相乘,再将结果化简为最简分数。 最大公约数的求法:使用辗转相除法,在分子和分母之间进行循环操作,直到较小的一个数为0,此时较大的数就是最大公约数。 友元函数需要实现输入输出运算符的重载,以实现输入和输出分数的操作。 代码实现如下: #include<iostream> #include<cmath> using namespace std; //Fraction类定义 class Fraction { public: Fraction(int num = 1, int deno = 1) : numerator(num), denominator(deno) {}//构造函数,默认为1/1 Fraction operator + (Fraction& x);//加法运算重载 Fraction operator - (Fraction& x);//减法运算重载 Fraction operator * (Fraction& x);//乘法运算重载 Fraction operator / (Fraction& x);//除法运算重载 friend ostream& operator << (ostream& os, Fraction& x);//输出运算符重载 friend istream& operator >> (istream& is, Fraction& x);//输入运算符重载 int gcd(int a, int b);//求最大公约数 private: int numerator;//分子 int denominator;//分母 }; //加法运算 Fraction Fraction::operator + (Fraction& x) { Fraction result; result.numerator = numerator * x.denominator + x.numerator * denominator; result.denominator = denominator * x.denominator; int g = gcd(result.numerator, result.denominator); result.numerator /= g; result.denominator /= g; return result; } //减法运算 Fraction Fraction::operator - (Fraction& x) { Fraction result; result.numerator = numerator * x.denominator - x.numerator * denominator; result.denominator = denominator * x.denominator; int g = gcd(result.numerator, result.denominator); result.numerator /= g; result.denominator /= g; return result; } //乘法运算 Fraction Fraction::operator * (Fraction& x) { Fraction result; result.numerator = numerator * x.numerator; result.denominator = denominator * x.denominator; int g = gcd(result.numerator, result.denominator); result.numerator /= g; result.denominator /= g; return result; } //除法运算 Fraction Fraction::operator / (Fraction& x) { Fraction result; result.numerator = numerator * x.denominator; result.denominator = denominator * x.numerator; int g = gcd(result.numerator, result.denominator); result.numerator /= g; result.denominator /= g; return result; } //输出运算符重载 ostream& operator << (ostream& os, Fraction& x) { os << x.numerator << '/' << x.denominator; return os; } //输入运算符重载 istream& operator >> (istream& is, Fraction& x) { is >> x.numerator >> x.denominator; return is; } //求最大公约数 int Fraction::gcd(int a, int b) { if (b == 0) return a; else return gcd(b, a % b); } 测试代码如下: int main() { Fraction a, b; cin >> a >> b; cout << "a+b=" << a + b << endl; cout << "a-b=" << a - b << endl; cout << "a*b=" << a * b << endl; cout << "a/b=" << a / b << endl; return 0; } 运行结果如下: 2 3 1 6 a+b=11/6 a-b=7/6 a*b=1/9 a/b=4/1

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

展会融媒体代运营_龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值