Keras中predict()方法和predict_classes()方法和evaluate()方法

这篇博客介绍了Keras中用于预测的几个关键方法。predict()方法返回样本属于每个类别的概率,可以结合numpy.argmax()获取预测标签。predict_classes()直接返回类别索引,但仅适用于序列模型。evaluate()方法则根据预测值与实际值计算误差。
摘要由CSDN通过智能技术生成

 predict()方法
        当使用predict()方法进行预测时,返回值是数值,表示样本属于每一个类别的概率,我们可以使用numpy.argmax()方法找到样本以最大概率所属的类别作为样本的预测标签。

# 预测样本属于每个类别的概率
print(model.predict(imgs))		# 打印概率
# [[3.3745366e-01 2.2980917e-02 2.0197949e-03 1.2046755e-02 1.9850987e-03
#   1.3152690e-04 4.0220530e-03 1.3779138e-03 5.9722424e-01 2.0758053e-02]
#  [5.0913623e-06 5.6117901e-08 9.7215974e-01 2.0343825e-05 2.3693956e-02
#   1.6027538e-03 7.3659585e-06 2.5106100e-03 5.8250910e-10 1.4506637e-09]
#  [7.1339104e-03 6.1033275e-06 2.1771197e-03 9.7346401e-01 2.2141664e-06
#   1.6861971e-02 8.6817810e-05 1.2291509e-04 4.7768017e-06 1.4035056e-04]]

predict_classes()方法
        当使用predict_classes()方法进行预测时,返回的是类别的索引,即该样本所属的类别标签

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值