题目
给一个n*m的01矩阵,如果矩阵中有若干个1是相邻的,则称这些1为一个块,求矩阵中块的数量。
思路
DFS朝一个方向一直搜索下去,前提是该结点存在且未被搜索过
代码
#include <bits/stdc++.h>
#include <queue>
using namespace std;
const int maxn = 100;
int n,m; //矩阵有n行m列
int matrix[maxn][maxn];
bool isVisit[maxn][maxn] = {false};
int X[4] = {-1,1,0,0};
int Y[4] = {0,0,-1,1};
void initVisit(){
for (int i = 0; i < maxn; ++i) {
for (int j = 0; j < maxn; ++j) {
isVisit[maxn][maxn] = false;
}
}
}
bool judge(int x,int y){ //判断该位置是否为1且未被访问
if(x<0 || x>n-1 || y<0 || y>m-1 || isVisit[x][y]==true || matrix[x][y]==0)
return false;
if(isVisit[x][y]==false && matrix[x][y]==1)
return true;
}
void DFS(int x,int y){
isVisit[x][y] = true;
if(!(judge(x+X[0],y+Y[0])||judge(x+X[1],y+Y[1])||judge(x+X[2],y+Y[2])||judge(x+X[3],y+Y[3]))){ //达到了死胡同,该位置的上下左右均为0或者均已被访问过
return;
}
//规定按上下左右的顺序朝一个方向一直搜索下去
for (int i = 0; i < 4; ++i) {
int newX = x+X[i];
int newY = y+Y[i];
if(judge(newX,newY)){
DFS(newX,newY);
}
}
}
int main(){
initVisit();
scanf("%d%d",&n,&m);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
scanf("%d",&matrix[i][j]);
}
}
int ans = 0;
for (int k = 0; k < n; ++k) {
for (int i = 0; i < m; ++i) {
if(isVisit[k][i]==false && matrix[k][i]==1){
ans++;
DFS(k,i);
}
}
}
printf("%d\n",ans);
return 0;
}
输入样例
3 3
1 0 1
0 1 0
1 1 1
输出
3
总结
DFS关键点在于找死胡同(递归的出口)和岔路口(递归分支)。