DFS思想理解,求矩阵中的快的数量

题目

给一个n*m的01矩阵,如果矩阵中有若干个1是相邻的,则称这些1为一个块,求矩阵中块的数量。

思路

DFS朝一个方向一直搜索下去,前提是该结点存在且未被搜索过

代码

#include <bits/stdc++.h>
#include <queue>
using namespace std;

const int maxn = 100;

int n,m;  //矩阵有n行m列
int matrix[maxn][maxn];

bool isVisit[maxn][maxn] = {false};

int X[4] = {-1,1,0,0};
int Y[4] = {0,0,-1,1};
void initVisit(){
    for (int i = 0; i < maxn; ++i) {
        for (int j = 0; j < maxn; ++j) {
            isVisit[maxn][maxn] = false;
        }
    }
}
bool judge(int x,int y){ //判断该位置是否为1且未被访问
    if(x<0 || x>n-1 || y<0 || y>m-1 || isVisit[x][y]==true || matrix[x][y]==0)
        return false;
    if(isVisit[x][y]==false && matrix[x][y]==1)
        return true;
}

void DFS(int x,int y){
    isVisit[x][y] = true;
    if(!(judge(x+X[0],y+Y[0])||judge(x+X[1],y+Y[1])||judge(x+X[2],y+Y[2])||judge(x+X[3],y+Y[3]))){  //达到了死胡同,该位置的上下左右均为0或者均已被访问过
        return;
    }
    //规定按上下左右的顺序朝一个方向一直搜索下去
    for (int i = 0; i < 4; ++i) {
        int newX = x+X[i];
        int newY = y+Y[i];
        if(judge(newX,newY)){
            DFS(newX,newY);
        }
    }
}
int main(){
    initVisit();
    scanf("%d%d",&n,&m);
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            scanf("%d",&matrix[i][j]);
        }
    }
    int ans = 0;
    for (int k = 0; k < n; ++k) {
        for (int i = 0; i < m; ++i) {
            if(isVisit[k][i]==false && matrix[k][i]==1){
                ans++;
                DFS(k,i);
            }
        }
    }
    printf("%d\n",ans);
    return 0;
}

输入样例

3 3
1 0 1
0 1 0
1 1 1

输出

3

总结

DFS关键点在于找死胡同(递归的出口)和岔路口(递归分支)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值