概率论基本教程学习记录其一

概率论基本教程学习记录其一

第一章 组合分析

1.2 计数基本法则

假设有两个试验,其中试验1有m钟可能结果,对于试验1的每一个结果,试验2有n种可能的结果,则这两个试验一共有mn种结果。

推广的基本计数法则:如果有r个试验,试验1有n1种结果,对于试验1的每一个结果,试验2有n2种结果,对于前两个试验的每一个结果,试验3有n3种结果,…,则这r个试验一共有n1n2n3…nr种结果。

1.3 排列

例子:a,b,c一共有多少种不同的排列方式?当元素各不相同时。

3x2x1 = 6 = 3!

推广一下,有n个元素,则一共有n!种排列方式。

例子:用6个字母PEPPER进行排列,一共有多少种方法?当有元素相同时

假设P和E都是可以区分的(加上脚标),那么一共有6!种排列方式,然而里面一共有 3 ! × 2 ! 3!\times2! 3!×2!个是重复的,因此一共有 6 ! 3 ! × 2 ! \frac{6!}{3!\times2!} 3!×2!6!种。

推广一下,对于n个元素,如果 n 1 n^1 n1个元素彼此互相相同,另 n 2 n^2 n2个元素彼此相同,…,另 n r n^r nr个元素彼此相同,那么有 n ! n 1 ! × n 2 ! × . . . × n r ! \frac{n!}{n_1!\times n_2!\times ... \times n_r!} n1!×n2!×...×nr!n!

1.4 组合

从n个元素里选r个元素组成一组,一共有多少个不同的组?

n ! ( n − r ) ! r ! \frac{n!}{(n-r)!r!} (nr)!r!n!

例子:假设在一排n个天线中,有m个失效,另外n-m个是有效的,并且假设所有有效的天线之间不可区分,失效的也不可区分,问有多少种线性排列方式,使得任意两个失效的天线都不相邻。

思路:将n-m个有效的天线排成一排,则一共有n-m+1个空位,然后插空就好。

恒等式:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-J2bRvpQH-1592359226099)(file:///C:\Users\12746\AppData\Local\Temp\ksohtml19052\wps1.png)]

简单证明一下:从n里面取r个元素,一共有 C r n C^n _r Crn种取法。从另一个角度考虑,不妨设这n个元素里有一个特殊的元素,记为元素1,那么这r个元素有两种可能,一种是包含元素1,取法为 ( r − 1 n − 1 ) (^{n-1} _{r-1}) (r1n1),另一种是不包含元素1,取法为: ( r n − 1 ) (^{n-1} _{r}) (rn1)

( r n ) (^n _r) (rn)通常称为二项式系数,因为他们是二项式的系数 ( x + y ) n (x+y)^n (x+y)n的展开项的系数。
( x + y ) n = ∑ k = 0 n ( k n ) x k y n − k (x+y)^n = \sum_{k=0}^{n}(_k ^n)x^ky^{n-k} (x+y)n=k=0n(kn)xkynk

证明一下:

考虑乘积
( x 1 + y 1 ) ( x 2 + y 2 ) . . . ( x n + y n ) (x_1+y_1)(x_2+y_2)...(x_n+y_n) (x1+y1)(x2+y2)...(xn+yn)
它展开后一共包含 2 n 2^n 2n个求和项,每一项都是n个因子的成绩,每一项都包含因子 x i x_i xi y i y_i yi。则一共有 ( k n ) (_k ^n) (kn)项含k个 x i x_i xi和(n-k)个 y i y_i yi

1.5 多项式系数

考虑这个问题:把n个不同的元素分成r组,每组有 n 1 , n 2 , . . . , n r n_1,n_2,...,n_r n1,n2,...,nr个元素,其中 ∑ i = 1 r n i = n \sum_{i=1}^rn_i=n i=1rni=n,一共有多少种分发呢?

( n 1 , n 2 , . . . , n r n ) = n ! n 1 ! × n 2 ! × . . . × n r ! (^n_{n_1,n_2,...,n_r}) = \frac{n!}{n_1!\times n_2!\times ... \times n_r!} (n1,n2,...,nrn)=n1!×n2!×...×nr!n!

这个式子同时也是多项式 ( x 1 + x 2 + . . . + x r ) n (x_1+x_2+...+x_r)^n (x1+x2+...+xr)n的展开项的系数。

证明:考虑乘积
( x 11 + x 12 + . . + x 1 r ) . . . ( x n 1 + x n 2 + . . + x n r ) (x_{11}+x_{12}+..+x_{1r})...(x_{n1}+x_{n2}+..+x_{nr}) (x11+x12+..+x1r)...(xn1+xn2+..+xnr)
它展开后一共包含 n n n^n nn个求和项,每一项都是n个因子的乘积,每一项都包含因子 x 1 i x_{1i} x1i x 2 i x_{2i} x2i等等。则一共有 ( n 1 , n 2 , . . . , n r n ) (^n_{n_1,n_2,...,n_r}) (n1,n2,...,nrn)项含 n 1 n_1 n1 x 1 i x_{1i} x1i,…

1.6 方程解的个数

思考一下这个问题:一个人去钓鱼,湖中一共有四种不同的🐟,如果这次钓鱼的结果用每种🐟的数量来计算,那么计算在总共钓到10条鱼的情况下一共有多少种钓法。

首先我们可以用向量 ( x 1 , x 2 , x 3 , x 4 ) (x_1,x_2,x_3,x_4) (x1,x2,x3,x4)来定义结果,更一般的假设有r种鱼,一共钓上来n条,那么结果数满足 x 1 + x 2 + . . . + x r = n x_1+x_2+...+x_r = n x1+x2+...+xr=n的非负整数向量 ( x 1 , x 2 , . . . , x r ) (x_1,x_2,...,x_r) (x1,x2,...,xr)的个数。为此,假设有n个连续的数值0排成一行,从n-1个相邻的0的间隔种选出r-1个间隔。让 x 1 x_1 x1为第一个间隔之间0的个数, x 2 x_2 x2为…。

命题1:共有 ( r − 1 n − 1 ) (^{n-1}_{r-1}) (r1n1)个不同的正整数向量满足: x 1 + x 2 + . . . + x r = n x_1+x_2+...+x_r = n x1+x2+...+xr=n

为了得到非负整数解(而不是正整数解)的个数,注意, x 1 + x 2 + . . . + x r = n x_1+x_2+...+x_r = n x1+x2+...+xr=n的非负整数解个数与 y 1 + y 2 + . . . + y r = n + r y_1+y_2+...+y_r = n+r y1+y2+...+yr=n+r的正整数解的个数是相同的,其中(令 y i = x i + 1 y_i = x_i + 1 yi=xi+1)。

命题2:共有 ( r − 1 n + r − 1 ) (^{n+r-1}_{r-1}) (r1n+r1)个不同的非负整数解向量 ( x 1 , x 2 , . . . , x r ) (x_1,x_2,...,x_r) (x1,x2,...,xr)满足 x 1 + x 2 + . . . + x r = n x_1+x_2+...+x_r = n x1+x2+...+xr=n

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值