概率论基础——组合分析

组合分析

  概率论中,许多问题只要通过计算某个事件发生的结果的数目就能得以解决,关于计数的数学理论通常称为组合分析,通俗来讲我认为这个东西就是“数数”,如果数都数不好那还怎么求概率。(高中学的时候叫排列组合)

1 计数基本法则

  首先来看计数基本法则,计数基本法则是许多其他“数数”的基础,日常生活中也常常要用到,只不过我们没有用专业一点儿的术语来描述它,假设有两个实验,其中试验1有 m m m种可能的结果,对应于试验1的每一个结果,试验2有 n n n种可能的结果,则这两个实验一共有 m n mn mn种可能的结果。这种只有两个试验的情况简直再好理解不过,进一步推广到 r r r个试验,试验1有 n 1 n_1 n1种可能的结果,对应于试验1的每一种结果,试验2有 n 2 n_2 n2种可能的结果,以此类推,这 r r r个试验一共有 n 1 n 2 ⋯ n r n_1n_2\cdots n_r n1n2nr种可能的结果
  计数基本法则的证明十分简单,尽管把所有的情况都列举出来,虽然麻烦了一点儿,不过很直观。

2 排列

  根据实际问题入手,给出三个字母 a , b , c a,b,c a,b,c现在对这三个字母进行排列,一共有多少种不同的情况呢?小学数学题嘛,一共6种情况分别是 a b c , a c b , b a c , b c a , c a b , c b a abc,acb,bac,bca,cab,cba abc,acb,bac,bca,cab,cba,每一种都称为一个排列。这排列数量是这么来的,第一个位置有三种可能,第一个位置确定完后第二个位置只有两种可能,最后一个位置只有一种可能,因此就是 3 ∗ 2 ∗ 1 = 6 3*2*1=6 321=6推广到若一共有 n n n个元素,依据上述推理,一共有 n ∗ ( n − 1 ) ∗ ( n − 2 ) ∗ ⋯ ∗ 2 ∗ 1 = n ! n*(n-1)*(n-2)*\cdots *2*1=n! n(n1)(n2)21=n!不同排列方式。(高中学的表示方法就是 A n n A_n^n Ann
  我们现在将这个问题稍作修改,现在有6字母 a , a , a , b , b , c a,a,a,b,b,c a,a,a,b,b,c对着6个字母进行排序,一共有多少种不同的情况呢?现在将重复的字母先区分开,给个下标 a 1 , a 2 , a 3 , b 1 , b 2 , c a_1,a_2,a_3,b_1,b_2,c a1,a2,a3,b1,b2,c现在就变成了前面的情况,一共有 6 ! = 720 6!=720 6!=720种情况。如果把下标去掉,则会发现有许多重复的排列结果,对于 a a a来说 a 1 , a 2 , a 3 a_1,a_2,a_3 a1,a2,a3在排列中的相对位置有 3 ! = 6 3!=6 3!=6种情况,去掉下标后这些情况完全一样, b b b同理 2 ! = 2 2!=2 2!=2种情况,根据基本计数法则, a a a b b b产生的排列结果有 6 ∗ 2 = 12 6*2=12 62=12种结果,鉴于这些结果完全没区别,因此实际的不同排列组合应该为 720 / 12 = 60 720/12=60 720/12=60种。老套路,推广到一般情况对于有 n n n个元素,其中有 n 1 n_1 n1个元素彼此相同, ⋯ \cdots n r n_r nr个元素彼此相同,这样的不同排列方式数量为 n ! n 1 ! n 2 ! ⋯ n r ! \cfrac{n!}{n_1!n_2!\cdots n_r!} n1!n2!nr!n!

3 组合

  再给出一个实际问题,从26个英文字母里面选择3个不同的英文字母有多少种不同的组,按照正常的逻辑推理,首先选第一个字母有26种可能,然后选第二个字母只剩下25种可能,再选第三个字母剩下24种可能。于是就是 26 ∗ 25 ∗ 24 = 15600 26*25*24=15600 262524=15600,如果考虑顺序则到此为止。不考虑顺序就是组合的问题,这15600种结果中,我们拿出 a , b , c a,b,c a,b,c三个字母,它被拿出的顺序可能是前一节说过的6种,现在这6种情况都是同一种组合,对任意三个字母都是一样的,因此组合的数量为 15600 / 6 = 2600 15600/6=2600 15600/6=2600种。推广到一般情况,从 n n n个元素中找 r r r个元素,一共有 n ∗ ( n − 1 ) ∗ ⋯ ∗ ( n − r + 1 ) n*(n-1)*\cdots *(n-r+1) n(n1)(nr+1)种取法,这些取法中的 r r r个元素根据不同的排列方式被取了 r ! r! r!次,因此不同组合的数量应为 n ∗ ( n − 1 ) ∗ ⋯ ∗ ( n − r + 1 ) r ! = n ! ( n − r ) ! r ! \cfrac{n*(n-1)*\cdots *(n-r+1)}{r!}=\cfrac{n!}{(n-r)!r!} r!n(n1)(nr+1)=(nr)!r!n!
  现在来专业地表达组合,对于 r ≤ n r\le n rn,定义 ( n r ) = n ! ( n − r ) ! r ! \begin{pmatrix} n\\r\end{pmatrix}=\cfrac{n!}{(n-r)!r!} (nr)=(nr)!r!n!,这样就表示从 n n n个元素中一次取 r r r个的可能组合数。(高中学的是 C n r C_n^r Cnr)现在考虑对这个公式变一变,试想从 n n n个元素中选取 r r r个元素,其中有一个元素 γ \gamma γ,所有可能的组合或包含 γ \gamma γ或不包含 γ \gamma γ,这就有了这个非常有用的恒等式:
( n r ) = ( n − 1 r − 1 ) + ( n − 1 r ) \begin{pmatrix} n\\r\end{pmatrix}=\begin{pmatrix} n-1\\r-1\end{pmatrix}+\begin{pmatrix} n-1\\r\end{pmatrix} (nr)=(n1r1)+(n1r)
组合 ( n r ) = n ! ( n − r ) ! r ! \begin{pmatrix} n\\r\end{pmatrix}=\cfrac{n!}{(n-r)!r!} (nr)=(nr)!r!n!经常成为二项式系数。二项式定理如下:
( x + y ) n = ∑ k = 0 n ( n k ) x k y n − k (x+y)^n=\sum_{k=0}^n\begin{pmatrix} n\\k\end{pmatrix}x^ky^{n-k} (x+y)n=k=0n(nk)xkynk
二项式定理可以用数学归纳法和组合法证明,这里就不证了。

4 二项式及多项式系数

  组合 ( n r ) = n ! ( n − r ) ! r ! \begin{pmatrix} n\\r\end{pmatrix}=\cfrac{n!}{(n-r)!r!} (nr)=(nr)!r!n!经常成为二项式系数。二项式定理如下:
( x + y ) n = ∑ k = 0 n ( n k ) x k y n − k (x+y)^n=\sum_{k=0}^n\begin{pmatrix} n\\k\end{pmatrix}x^ky^{n-k} (x+y)n=k=0n(nk)xkynk
二项式定理可以用数学归纳法和组合法证明,这里就不证了。现在考虑另一个问题,把 n n n个不同的元素分成 r r r组,每组包含的元素数量分别为 n 1 n 2 ⋯ n r n_1n_2\cdots n_r n1n2nr其中 ∑ i = 1 r n i = n \sum_{i=1}^rn_i=n i=1rni=n,一共有多少分法。根据组合我们可以非常简单地想到,先从 n n n中选 n 1 n_1 n1个,再从剩下的 n − n 1 n-n_1 nn1中选 n 2 n_2 n2个,以此类推,最后根据计数基本法则,组数就是这些的乘积:
( n n 1 ) ( n − n 1 n 2 ) ⋯ ( n − n 1 − n 2 − ⋯ − n r − 1 n r ) = n ! ( n − n 1 ) ! n 1 ! ∗ ( n − n 1 ) ! ( n − n 1 − n 2 ) ! n 2 ! ∗ ⋯ ∗ ( n − n 1 − n 2 − ⋯ − n r − 1 ) ! 0 ! n r ! = n ! n 1 ! n 2 ! ⋯ n r ! \begin{aligned} &\begin{pmatrix} n\\n_1\end{pmatrix}\begin{pmatrix} n-n_1\\n_2\end{pmatrix}\cdots \begin{pmatrix} n-n_1-n_2-\cdots -n_{r-1}\\n_r\end{pmatrix} \\ &=\cfrac{n!}{(n-n_1)!n_1!}*\cfrac{(n-n_1)!}{(n-n_1-n_2)!n_2!}*\cdots *\cfrac{(n-n_1-n_2-\cdots -n_{r-1})!}{0!n_r!}\\ &=\cfrac{n!}{n_1!n_2!\cdots n_r!} \end{aligned} (nn1)(nn1n2)(nn1n2nr1nr)=(nn1)!n1!n!(nn1n2)!n2!(nn1)!0!nr!(nn1n2nr1)!=n1!n2!nr!n!
这和前面那个排列问题的结果是一样的。
  根据上面问题,如果 ∑ i = 1 r n i = n \sum_{i=1}^rn_i=n i=1rni=n,则定义 ( n n 1 , n 2 , ⋯   , n r ) = n ! n 1 ! n 2 ! ⋯ n r ! \begin{pmatrix} n\\n_1,n_2,\cdots, n_r\end{pmatrix}=\cfrac{n!}{n_1!n_2!\cdots n_r!} (nn1,n2,,nr)=n1!n2!nr!n!,表示吧 n n n个不同的元素分成大小分别为 n 1 , n 2 , ⋯   , n r n_1,n_2,\cdots, n_r n1,n2,,nr r r r个不同组的组数。这个组合也称为多项式系数,多项式定理如下:
( x 1 + x 2 + ⋯ + x r ) n = ∑ ( n 1 , ⋯   , n r ) : n 1 + ⋯ + n r = n ( n n 1 , n 2 , ⋯   , n r ) x 1 n 1 x 2 n 2 ⋯ x r n r (x_1+x_2+\cdots +x_r)^n=\sum_{(n_1,\cdots,n_r):n_1+\cdots+n_r=n}\begin{pmatrix} n\\n_1,n_2,\cdots, n_r\end{pmatrix}x_1^{n_1}x_2^{n_2}\cdots x_r^{n_r} (x1+x2++xr)n=(n1,,nr):n1++nr=n(nn1,n2,,nr)x1n1x2n2xrnr
所有 n i n_i ni都是非负数。

5 思考问题

  理解数学中的定义并不难,遇到实际问题如果脑子不灵活理解了定义也不会用。下面两个问题很简单,稍微思考一下就可以了:

  1. 将10个小孩平均分成A、B两个组去参加两场不同的比赛,一共有多少种分法?( 10 ! 5 ! × 5 ! \cfrac{10!}{5!×5!} 5!×5!10!
  2. 将10个小孩平均分成两组进行篮球比赛,一共有多少种分法?( 10 ! / ( 5 ! × 5 ! ) 2 ! \cfrac{10!/(5!×5!)}{2!} 2!10!/(5!×5!)

参考资料:《概率论基础教程》Sheldon M.Ross

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
概率论中,先验概率是指根据以往经验和分析得到的概率,在"由因求果"问题中作为因出现。先验概率可以通过全概率公式等方法计算得到。而后验概率是指在已有结果的情况下,求引起这个结果的因素的可能性,即由果求因。后验概率可以通过贝叶斯定理计算得到。 关于保研复习资料,根据引用提供的资料,它是一份自己整理的保研概率论面试保研资料。这份资料可能包括了保研概率论的相关知识、面试常见问题和答案等内容。如果你对概率论的保研复习感兴趣,这份资料可能会对你有所帮助。但请注意,复习资料只是辅助工具,最重要的还是理解概率论的基本概念和原理,并进行大量的练习和实践。希望你能够努力学习,加油!<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [概率论保研复习.pdf](https://download.csdn.net/download/Mikesuper_blog/12722360)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [计算机保研复习](https://blog.csdn.net/dlz_yhn/article/details/126806194)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [计算机保研专业课必备之数学](https://blog.csdn.net/qq_54117842/article/details/127927858)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值