目标检测--精确度(precision), 准确率(accuracy), 召回率(recall), 漏检率, 虚警率

转自:https://blog.csdn.net/qq_29007291/article/details/86080456

假设:
一组样本,个数为,正例有P个,负例有N个,

算法结果:
判断为正例的正例有TP个,判断为负例的正例有FN个(假的负例)P=TP+FN
判断为负例的负例为TN个,判断为正例的负例有FP个(假的正例)N=TN+FP

指标计算:
精确度(Precision)P=所有判断为正例的例子中,真正为正例的所占的比例=TP/(TP+FP)
准确率(Accuracy)A=判断正确的例子的比例=(TP+TN)/(P+N)
召回率(Recall)R=所有正例中,被判断为正例的比例=TP/P
漏警概率=1-Recall,正例判断错误的概率,漏掉的正例所占比率
虚警率=1-Precision,错误判断为正例的概率,虚假正例所占的比率

注意:在一般的目标检测中,没有真的负例之说。自然也不存在FN与TN。因此准确率(accuracy)这个时候就等于精确度(precision)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值