一个等价关系的证明

这篇博客旨在证明一个等价关系:n-2nsin(n^1) / n^(n-2) 当 n 趋于无穷大时的极限。通过逐步计算和应用极限法则,将原始表达式转换为 exp 形式,并分别求解其中两个关键部分的极限,得出 L = e^0 = 1,从而完成证明。
摘要由CSDN通过智能技术生成

Our goal is to prove
n − 2 n sin ⁡ 1 n ∼ n − 2 ( n → ∞ ) \boxed{ {n^{-2n \sin\frac{1}{n}}}\sim{n^{-2}}(n \to \infty)} n2nsinn1n2(n)
For this purpose, we are going to compute the limit as follows
L = lim ⁡ n → ∞ n − 2 n sin ⁡ 1 n n − 2 = lim ⁡ n → ∞ n 2 − 2 n sin ⁡ 1 n = lim ⁡ n → ∞ exp ⁡ [ ( 2 − 2 n sin ⁡ 1 n ) ln ⁡ n ] = exp ⁡ [ lim ⁡ n → ∞ ( 2 − 2 n sin ⁡ 1 n ) ln ⁡ n ] = exp ⁡ [ 2 lim ⁡ n → ∞ ( 1 − n sin ⁡ 1 n ) ln ⁡ n ] = exp ⁡ [ 2 lim ⁡ n → ∞ ( n 2 − n 3 sin ⁡ 1 n ) ⋅ ln ⁡ n n 2 ] \begin{aligned} L&=\lim_{n \to \infty}\frac{n^{-2n \sin\frac{1}{n}}}{n^{-2}}\\ &=\lim_{ n\to \infty}n^{2-2n \sin\frac{1}{n}}\\ &=\lim_{n \to \infty}\exp \left[\left(2-2n\sin\frac{1}{n}\right)\ln n\right]\\ &=\exp\left[\lim_{n \to \infty}\left(2-2n\sin\frac{1}{n}\right)\ln n\right]\\ &=\exp\left[2\lim_{n \to \infty}\left(1-n\sin\frac{1}{n}\right)\ln n\right]\\ &=\exp\left[2\lim_{n \to \infty}\left(n^2-n^3\sin\frac{1}{n}\right)\cdot\frac{\ln n}{n^2}\right] \end{al

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值