证明以下三个关系
- 自反性 (就是自己和自己有关系)
- 对称性(x和y有关系,那么y和x有关系,它们是对称的)
- 传递性(x和y有关系,y和z有关系,那么x和z有关系,存在关系的传递)
在对应的题目中,我们会有对应的解法
例如:
证明R是等价关系,R={<x,y>,<u,v>|x+v=y+u}
(注:这里<a,b>代表的是a和b的关系,也就是说x和y存在关系,u和v存在关系,它们还满足x+v=y+u)
解答如下:
1自反性,因为x+y=y+x,所以显然有满足关系R
2对称性 ,由得出
x+v=y+u
则u+y=v+x
从而也满足关系R
3传递性,
由和 得知
x+v=y+u ,u+t=v+s
两式相加,并且等式两边同时减去u+v,
得到x+t=y+s
从而 满足关系R
下面列出离散数学课本上对等价关系的定义
若有任何问题和不足,还请评论区指正,谢谢。