离散数学关于等价关系的证明

该博客详细介绍了如何证明一个关系R是等价关系,通过展示R满足自反性(x与x有关系)、对称性(x与y有关系,则y与x也有关系)和传递性(x与y、y与z有关系,则x与z有关系)的条件。使用具体的例子R={<x,y>|x+y=y+x}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

证明以下三个关系

  1. 自反性 (就是自己和自己有关系)
  2. 对称性(x和y有关系,那么y和x有关系,它们是对称的)
  3. 传递性(x和y有关系,y和z有关系,那么x和z有关系,存在关系的传递)

在对应的题目中,我们会有对应的解法

例如:

证明R是等价关系,R={<x,y>,<u,v>|x+v=y+u}

(注:这里<a,b>代表的是a和b的关系,也就是说x和y存在关系,u和v存在关系,它们还满足x+v=y+u)

解答如下:

1自反性,因为x+y=y+x,所以显然有满足关系R
2对称性 ,由得出
x+v=y+u
则u+y=v+x
从而也满足关系R
3传递性,
由和 得知
x+v=y+u ,u+t=v+s
两式相加,并且等式两边同时减去u+v,
得到x+t=y+s
从而 满足关系R

下面列出离散数学课本上对等价关系的定义

 若有任何问题和不足,还请评论区指正,谢谢。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值