一些问题

1. ∫ 1 e x − 1 d x = ∫ e x ( e x ) 2 − e x d x = ∫ 1 ( e x ) 2 − e x d ( e x ) = ∫ [ 1 e x − 1 − 1 e x ] d ( e x ) = ln ⁡ ∣ e x − 1 ∣ − ln ⁡ ∣ e x ∣ + C = ln ⁡ ∣ e x − 1 ∣ − x + C . \begin{aligned} \int \frac{1}{e^x-1}{\rm d}x&=\int \frac{e^x}{(e^x)^2-e^x}{\rm d}x\\ &=\int \frac{1}{(e^x)^2-e^x}{\rm d}(e^x)\\ &=\int \left[\frac{1}{e^x-1}-\frac{1}{e^x}\right]{\rm d}(e^x)\\ &=\ln|e^x-1|-\ln |e^x|+C\\ &=\ln |e^x-1|-x+C. \end{aligned} ex11dx=(ex)2exexdx=(ex)2ex1d(ex)=[ex11ex1]d(ex)=lnex1lnex+C=lnex1x+C.

注意到
∀ x ≠ 1 : 1 + x + x 2 + ⋯ + x n = 1 − x n + 1 1 − x , \forall x \neq 1:1+x+x^2+\cdots+x^n=\frac{1-x^{n+1}}{1-x}, x̸=1:1+x+x2++xn=1x1xn+1,
于是
lim ⁡ n → ∞ 1 + a + a 2 + ⋯ + a n 1 + b + b 2 + ⋯ + b n = lim ⁡ n → ∞ 1 − a n + 1 1 − a , 1 − b n + 1 1 − b = 1 − b 1 − a lim ⁡ n → ∞ 1 − a n + 1 1 − b n + 1 = lim ⁡ n → ∞ 1 − a n + 1 1 − a , 1 − b n + 1 1 − b = 1 − b 1 − a lim ⁡ n → ∞ 1 − a n + 1 1 − b n + 1 = 1 − b 1 − a ⋅ 1 − 0 1 − 0 = 1 − b 1 − a . \begin{aligned} \lim_{n \to \infty}\frac{1+a+a^2+\cdots+a^n}{1+b+b^2+\cdots+b^n}&=\lim_{n \to \infty}\frac{\dfrac{1-a^{n+1}}{1-a},}{\dfrac{1-b^{n+1}}{1-b}}\\ &=\frac{1-b}{1-a}\lim_{n \to \infty}\frac{1-a^{n+1}}{1-b^{n+1}}\\ &=\lim_{n \to \infty}\frac{\dfrac{1-a^{n+1}}{1-a},}{\dfrac{1-b^{n+1}}{1-b}}\\ &=\frac{1-b}{1-a}\lim_{n \to \infty}\frac{1-a^{n+1}}{1-b^{n+1}}\\ &=\frac{1-b}{1-a}\cdot\frac{1-0}{1-0}\\ &=\frac{1-b}{1-a}. \end{aligned} nlim1+b+b2++bn1+a+a2++an=nlim1b1bn+11a1an+1,=1a1bnlim1bn+11an+1=nlim1b1bn+11a1an+1,=1a1bnlim1bn+11an+1=1a1b1010=1a1b.

因为 x + 1 x = 1 , x+\frac{1}{x}=1, x+x1=1,
所以 x 2 = x − 1. x^2=x-1. x2=x1.
于是
x 7 + 1 x 7 = x 2 ⋅ x 2 ⋅ x + 1 x 2 ⋅ x 2 ⋅ x = ( x − 1 ) ⋅ ( x − 1 ) ⋅ x + 1 ( x − 1 ) ⋅ ( x − 1 ) ⋅ x = ( x 2 − 2 x + 1 ) x + 1 ( x 2 − 2 x + 1 ) x = ( x − 1 − 2 x + 1 ) x + 1 ( x − 1 − 2 x + 1 ) x = − x 2 − 1 x 2 = − ( x + 1 x ) 2 + 2 = − 1 + 2 = 1. \begin{aligned} x^7+\frac{1}{x^7}&=x^2\cdot x^2\cdot x+\frac{1}{x^2\cdot x^2\cdot x}\\ &=(x-1)\cdot (x-1)\cdot x+\frac{1}{(x-1)\cdot (x-1)\cdot x}\\ &=(x^2-2x+1)x+\frac{1}{(x^2-2x+1)x}\\ &=(x-1-2x+1)x+\frac{1}{(x-1-2x+1)x}\\ &=-x^2-\frac{1}{x^2}\\ &=-\left(x+\frac{1}{x}\right)^2+2\\ &=-1+2\\ &=1. \end{aligned} x7+x71=x2x2x+x2x2x1=(x1)(x1)x+(x1)(x1)x1=(x22x+1)x+(x22x+1)x1=(x12x+1)x+(x12x+1)x1=x2x21=(x+x1)2+2=1+2=1.

( 0 , + ∞ ) (0,+\infty) (0,+)上的可微函数 f ( x ) f(x) f(x)满足 f ( x ) = 1 + 1 x ∫ 1 x f ( t ) d t , f(x)=1+\frac{1}{x}\int_1^x f(t){\rm d}t, f(x)=1+x11xf(t)dt, f ( x ) f(x) f(x).

将题设等式两边对 x x x求导,有
f ′ ( x ) = − 1 x 2 ∫ 1 x f ( t ) d t + 1 x f ( x ) = − 1 x [ 1 x ∫ 1 x f ( t ) d t − f ( x ) ] = − 1 x [ f ( x ) − 1 − f ( x ) ] = 1 x , \begin{aligned} f'(x)&=-\frac{1}{x^2}\int_1^x f(t){\rm d}t+\frac{1}{x}f(x)\\ &=-\frac{1}{x}\left[\frac{1}{x}\int_1^x f(t){\rm d}t-f(x)\right]\\ &=-\frac{1}{x}\left[f(x)-1-f(x)\right]\\ &=\frac{1}{x}, \end{aligned} f(x)=x211xf(t)dt+x1f(x)=x1[x11xf(t)dtf(x)]=x1[f(x)1f(x)]=x1,
于是
f ( x ) = ln ⁡ ∣ x ∣ + C = ln ⁡ x + C f(x)=\ln |x|+C=\ln x+C f(x)=lnx+C=lnx+C
x = 1 x=1 x=1代入题设等式,得 f ( 1 ) = 1 f(1)=1 f(1)=1,将此结果代入通解,得 C = 1 C=1 C=1. 于是
f ( x ) = ln ⁡ x + 1 , x ∈ ( 0 , + ∞ ) . f(x)=\ln x+1,x \in (0,+\infty). f(x)=lnx+1,x(0,+).

证明

首先,我们证明: f ( x ) f(x) f(x) ( 0 , π ) (0,\pi) (0,π)内至少存在两个零点. 为此目的,考虑使用反证法.

f ( x ) f(x) f(x) ( 0 , π ) (0,\pi) (0,π)内无零点,则依 f ( x ) f(x) f(x)的连续性,知 f ( x ) f(x) f(x) ( 0 , π ) (0,\pi) (0,π)内恒正或者恒负,总之不能变号. 如此,则有
∫ 0 π f ( x ) sin ⁡ x d x &gt; 0 ( 或 &lt; 0 ) , \int_0^{\pi}f(x)\sin x{\rm d}x&gt;0(或&lt;0), 0πf(x)sinxdx>0(<0),
与题设矛盾. 故而, f ( x ) f(x) f(x) ( 0 , π ) (0,\pi) (0,π)内至少存在一个零点.

又假设, f ( x ) f(x) f(x) ( 0 , π ) (0,\pi) (0,π)内仅有一个零点 x = x 0 x=x_0 x=x0,那么 f ( x ) f(x) f(x) ( 0 , x 0 ) (0,x_0) (0,x0) ( x 0 , π ) (x_0,\pi) (x0,π)上也不得变号. 若 f ( x ) f(x) f(x)在上述两区间符号相异,则容易验证 f ( x ) sin ⁡ ( x − x 0 ) f(x)\sin(x-x_0) f(x)sin(xx0) ( 0 , x 0 ) ⋃ ( x 0 , π ) (0,x_0) \bigcup(x_0,\pi) (0,x0)(x0,π)上恒正或者恒负,于是
∫ 0 π f ( x ) sin ⁡ ( x − x 0 ) d x &gt; 0 ( 或 &lt; 0 ) . \int_0^{\pi}f(x)\sin (x-x_0){\rm d}x&gt;0(或&lt;0). 0πf(x)sin(xx0)dx>0(<0).
然而,依题设条件,有
∫ 0 π f ( x ) sin ⁡ ( x − x 0 ) d x = ∫ 0 π f ( x ) ( sin ⁡ x cos ⁡ x 0 − cos ⁡ x sin ⁡ x 0 ) d x = cos ⁡ x 0 ∫ 0 π f ( x ) sin ⁡ x d x − sin ⁡ x 0 ∫ 0 π f ( x ) cos ⁡ x d x = 0 \begin{aligned} \int_0^{\pi}f(x)\sin (x-x_0){\rm d}x&amp;= \int_0^{\pi}f(x)(\sin x\cos x_0-\cos x\sin x_0){\rm d}x\\ &amp;=\cos x_0\int_0^{\pi}f(x)\sin x{\rm d}x-\sin x_0\int_0^{\pi}f(x)\cos x{\rm d}x\\ &amp;=0 \end{aligned} 0πf(x)sin(xx0)dx=0πf(x)(sinxcosx0cosxsinx0)dx=cosx00πf(x)sinxdxsinx00πf(x)cosxdx=0
出现矛盾. 类似地,若 f ( x ) f(x) f(x)在上述两区间符号相同,也容易验证 f ( x ) cos ⁡ ( x − x 0 ) f(x)\cos(x-x_0) f(x)cos(xx0) ( 0 , x 0 ) ⋃ ( x 0 , π ) (0,x_0) \bigcup(x_0,\pi) (0,x0)(x0,π)上恒正或者恒负,同样能够推出矛盾. 于是 f ( x ) f(x) f(x) ( 0 , π ) (0,\pi) (0,π)内至少有两个零点.

假设 f ( x ) f(x) f(x)这两个零点为 x 1 , x 2 x_1,x_2 x1,x2,又不妨设 0 &lt; x 1 &lt; x 2 &lt; π 0&lt;x_1&lt;x_2&lt;\pi 0<x1<x2<π, 于是依Rolle定理,存在一点 ξ ∈ ( x 1 , x 2 ) ⊂ ( 0 , π ) \xi \in (x_1,x_2) \subset (0,\pi) ξ(x1,x2)(0,π)使得 f ′ ( ξ ) = 0 f&#x27;(\xi)=0 f(ξ)=0,此即所欲证者.

a n : = ln ⁡ n n , a_n:=\frac{\ln n}{n}, an:=nlnn,
我们证明 ∀ n &gt; e : a n + 1 &lt; a n . \forall n&gt; e:a_{n+1}&lt;a_n. n>e:an+1<an.
因为
a n + 1 − a n = ln ⁡ ( n + 1 ) n + 1 − ln ⁡ n n = n ln ⁡ ( n + 1 ) − ( n + 1 ) ln ⁡ n n ( n + 1 ) = 1 n ( n + 1 ) ln ⁡ [ ( 1 + 1 n ) n ⋅ 1 n ] \begin{aligned} a_{n+1}-a_n&amp;=\frac{\ln(n+1)}{n+1}-\frac{\ln n}{n}\\ &amp;=\frac{n\ln(n+1)-(n+1)\ln n}{n(n+1)}\\ &amp;=\frac{1}{n(n+1)}\ln\left[\left(1+\frac{1}{n}\right)^n\cdot \frac{1}{n}\right] \end{aligned} an+1an=n+1ln(n+1)nlnn=n(n+1)nln(n+1)(n+1)lnn=n(n+1)1ln[(1+n1)nn1]
注意到
( 1 + 1 n ) n &lt; e ,     1 n &lt; 1 e \left(1+\frac{1}{n}\right)^n&lt;e,~~~\frac{1}{n}&lt;\frac{1}{e} (1+n1)n<e,   n1<e1
所以
( 1 + 1 n ) n ⋅ 1 n &lt; e ⋅ 1 e = 1 \left(1+\frac{1}{n}\right)^n\cdot \frac{1}{n}&lt;e \cdot\frac{1}{e}=1 (1+n1)nn1<ee1=1
于是
a n + 1 − a n = 1 n ( n + 1 ) ln ⁡ [ ( 1 + 1 n ) n ⋅ 1 n ] &lt; 0 , a_{n+1}-a_n=\frac{1}{n(n+1)}\ln\left[\left(1+\frac{1}{n}\right)^n\cdot \frac{1}{n}\right]&lt;0, an+1an=n(n+1)1ln[(1+n1)nn1]<0,
这表明 { a n } \{a_n\} {an}单调递减,其中 n = 3 , 4 , ⋯ n=3,4,\cdots n=3,4,.

此外,
lim ⁡ n → ∞ a n = lim ⁡ n → ∞ ln ⁡ n 1 / n = ln ⁡ lim ⁡ n → ∞ n 1 / n = ln ⁡ 1 = 0. \lim_{n \to \infty}a_n= \lim_{n \to \infty}\ln n^{1/n}=\ln \lim_{n \to \infty}n^{1/n}=\ln 1=0 . nliman=nlimlnn1/n=lnnlimn1/n=ln1=0.

至此,我们已证得莱布尼茨判别法条件俱已满足,因此级数
∑ ∞ ( − 1 ) n ln ⁡ n n \sum^{\infty}(-1)^n\frac{\ln n}{n} (1)nnlnn收敛.

为解初值问题
{ y ′ ′ − 1 2 y ′ 3 = 0 , y ∣ x = 0 = 0 , y ′ ∣ x = 0 = 1 \begin{cases}y&#x27;&#x27;-\dfrac{1}{2}y&#x27;^3=0,\\y\big|_{x=0}=0,y&#x27;\big|_{x=0}=1\end{cases} y21y3=0,yx=0=0,yx=0=1
y ′ = : p y&#x27;=:p y=:p,则 y ′ ′ = d p d x . y&#x27;&#x27;=\dfrac{{\rm d}p}{{\rm d}x}. y=dxdp. 于是原方程化为
d p d x − 1 2 p 3 = 0 \dfrac{{\rm d}p}{{\rm d}x}-\frac{1}{2}p^3=0 dxdp21p3=0
分离变量得
d p p 3 = 1 2 d x \frac{{\rm d}p}{p^3}=\frac{1}{2}{\rm d}x p3dp=21dx
两端积分,得
− 1 2 p 2 = 1 2 x + C 1 -\frac{1}{2p^2}=\frac{1}{2}x+C_1 2p21=21x+C1
x = 0 , p = 1 x=0,p=1 x=0,p=1代入,解得 C 1 = − 1 2 C_1=-\dfrac{1}{2} C1=21. 于是
d y d x = p = 1 1 − x \frac{{\rm d}y}{{\rm d}x}=p=\frac{1}{\sqrt{1-x}} dxdy=p=1x 1
这里,据初值条件,开方取正. 进而
d y = 1 1 − x d x {\rm d}y=\frac{1}{\sqrt{1-x}}{\rm d}x dy=1x 1dx
两端积分,得
y = − 2 1 − x + C 2 y=-2\sqrt{1-x}+C_2 y=21x +C2
再将 x = 0 , y = 0 x=0,y=0 x=0,y=0代入,解得 C 2 = 2 C_2=2 C2=2,于是
y = 2 − 2 1 − x y=2-2\sqrt{1-x} y=221x
即为所求.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值