Pruning 系列 (一)非结构化剪枝

本文介绍了一种非结构化剪枝的方法,适用于PyTorch环境,包括细粒度、向量级和卷积核级别的剪枝策略。通过设置权重为0来简化模型,提供不同级别的剪枝学习代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境

  • python 3.9
  • numpy 1.24.1
  • pytorch 2.0.0+cu117

非结构剪枝

  • 特点

                1.简单,将满足某些田间的 weight 置为0即可
                2.pytorch容易访问所有参数(weight)
                3.最精细化

  • 类型

                1.细粒度剪枝(fine-grained)
                2.向量剪枝(vector-level)
                3.卷积核剪枝(kernel-level)

一、细粒度剪枝(fine-grained)

 学习代码:

# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import numpy as np

cla
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_yuki_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值