Deepfake Defenders:中科院开源 Deepfake 伪造内容识别工具!

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

微信公众号|搜一搜:蚝油菜花

在这里插入图片描述

🚀 快速阅读

  1. Deepfake Defenders 是由中科院自动化研究所团队开发的开源 AI 模型,专攻 Deepfake 伪造内容的识别。
  2. 模型通过像素级分析和深度学习算法,实时检测图像和视频中的伪造痕迹。
  3. 项目开源,全球开发者可共同参与改进,广泛应用于社交媒体监控、新闻验证等领域。

正文(附运行示例)

Deepfake Defenders 是什么

Deepfake Defenders 是由中国科学院自动化研究所的 VisionRush 团队开发的一款开源 AI 模型。它的主要作用是识别和防御由 Deepfake 技术生成的伪造图像和视频。通过分析媒体内容中的微小像素变化,这个模型能够有效检测 Deepfake,帮助用户区分真伪,减少虚假信息的传播和潜在的滥用风险。

Deepfake Defenders 的主要功能

  • 伪造检测:能够识别出使用 Deepfake 技术制作的图像和视频。
  • 像素级分析:利用深度学习算法,发现伪造内容中的细微异常。
  • 开源协作:鼓励全球的开发者和研究人员参与改进,提升识别的精度。
  • 实时识别:可以快速分析媒体内容,实时识别 Deepfake。

Deepfake Defenders 的技术原理

  • 特征提取:使用卷积神经网络(CNN)来提取图像和视频的特征。
  • 异常检测:识别 Deepfake 内容中常见的异常,比如不自然的面部表情。
  • 生成对抗网络(GAN):通过生成器和判别器的对抗训练,增强检测能力。
  • 多模态分析:结合图像和音频内容,检测不匹配或异常的声音模式。

如何运行 Deepfake Defenders

预训练模型准备

在开始使用之前,请将模型的 ImageNet-1K 预训练权重文件放置在./pre_model目录下,权重下载链接如下:

RepLKNet: https://drive.google.com/file/d/1vo-P3XB6mRLUeDzmgv90dOu73uCeLfZN/view?usp=sharing
ConvNeXt: https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_384.pth

训练

  1. 更改数据集路径:将训练所需的 txt 文件放置在dataset文件夹下。
  2. 更改超参数:在main_train.py中更改模型参数。
# RepLKNet
cfg.network.name = 'replknet'
cfg.train.batch_size = 16

# ConvNeXt
cfg.network.name = 'convnext'
cfg.train.batch_size = 24
  1. 启动训练
  • 单机多卡训练(8 卡):
bash main.sh
  • 单机单卡训练:
CUDA_VISIBLE_DEVICES=0 python main_train_single_gpu.py
  1. 模型融合:在merge.py中更改模型路径,执行python merge.py获取最终推理测试模型。

推理

通过 POST 请求接口进行推理,示例如下:

import requests
import json

header = {
   'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.107 Safari/537.36'
}

url = 'http://ip:10005/inter_api'
image_path = './dataset/val_dataset/51aa9b8d0da890cd1d0c5029e3d89e3c.jpg'
data_map = {'img_path': image_path}
response = requests.post(url, data=json.dumps(data_map), headers=header)
content = response.content
print(json.loads(content))

Docker 使用

  1. Docker 构建
sudo docker build -t vision-rush-image:1.0.1 --network host .
  1. 容器启动
sudo docker run -d --name vision_rush_image --gpus=all --net host vision-rush-image:1.0.1

资源


❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

微信公众号|搜一搜:蚝油菜花

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值