Fish Agent:集成 ASR 和 TTS 的端到端语音处理模型,支持多语言转换

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. Fish Agent 是 FishAudio 推出的端到端语音处理模型,支持多语言的语音到语音转换。
  2. 该模型集成 ASR 和 TTS 功能,无需传统编解码器,实现从语音输入到语音输出的完整流程。
  3. Fish Agent 目前处于测试阶段,适用于内容创作、娱乐游戏、教育和培训等多个场景。

正文(附运行示例)

Fish Agent 是什么

在这里插入图片描述

Fish Agent 是 FishAudio 推出的创新的端到端语音处理模型,集成自动语音识别(ASR)和文本到语音(TTS)技术,无需传统的语义编码器/解码器,实现语音到语音的直接转换。模型经过 700,000 小时的多语言音频内容训练,支持包括英语、中文在内的多种语言,精准捕捉和生成环境音频信息。Fish Agent 目前正处于测试阶段,基于不断的优化和改进,为用户提供更准确、更自然的语音交互体验。

Fish Agent 的主要功能

  • 语音到语音转换:Fish Agent 能直接将输入的语音转换成另一种语音,无需先将语音转换为文本,再将文本转换为语音。
  • 多语言支持:模型支持多种语言,处理不同语言的语音输入和输出。
  • 环境音频信息捕捉:捕捉和生成环境音频信息,适于多种音频处理场景。
  • 无需传统编解码器:与传统的语音处理模型不同,Fish Agent 不依赖于语义编码器/解码器,用不同的架构处理语音数据。
  • 端到端处理:集成 ASR 和 TTS 功能,实现从语音输入到语音输出的完整流程。

Fish Agent 的技术原理

  • 深度学习:Fish Agent 基于深度学习技术,特别是神经网络,学习和模拟语音信号的复杂模式。
  • 数据驱动:模型的训练基于大量的多语言音频数据,理解和生成不同语言的语音。
  • 特征提取:模型包含特征提取机制,从原始音频中提取关键信息,以便进行处理。
  • 声码器技术:Fish Agent 用声码器技术,将语音信号转换为另一种声音的技术,用于语音合成。
  • 优化算法:为提高模型的性能和效率,Fish Agent 用特定的优化算法,如注意力机制、卷积神经网络(CNN)和循环神经网络(RNN)等。

如何运行 Fish Agent

下载模型

你可以通过以下命令下载 Fish Agent 模型:

huggingface-cli download fishaudio/fish-agent-v0.1-3b --local-dir checkpoints/fish-agent-v0.1-3b

将下载的模型文件放入 checkpoints 文件夹中。你还需要 fish-speech-1.4 仓库中的 VQGAN 权重文件。最终 checkpoints 文件夹中应包含两个子文件夹:checkpoints/fish-speech-1.4checkpoints/fish-agent-v0.1-3b

环境准备

如果你还没有安装 Fish-speech 的环境,请使用以下命令进行安装:

pip install -e .[stable]

启动 Agent 演示

在主文件夹下使用以下命令启动 Agent 演示:

python -m tools.api --llama-checkpoint-path checkpoints/fish-agent-v0.1-3b/ --mode agent --compile

--compile 参数仅支持 Python < 3.12,这将大幅加速令牌生成。首次启动时,模型将进行编译(如果 --compile 为 True),这可能需要一些时间,请耐心等待。

接下来,使用以下命令启动 Gradio WebUI:

python -m tools.e2e_webui

这将在设备上创建一个 Gradio WebUI。

运行示例

以下是一个简单的示例,展示如何使用 Fish Agent 进行语音到语音转换:

from fish_agent import FishAgent

# 初始化模型
agent = FishAgent(checkpoint_path='checkpoints/fish-agent-v0.1-3b/', mode='agent', compile=True)

# 输入语音文件路径
input_audio = 'path/to/input/audio.wav'

# 处理语音
output_audio = agent.process_audio(input_audio)

# 保存输出语音文件
output_audio.save('path/to/output/audio.wav')

资源

  1. Github(使用教程):https://github.com/fishaudio/fish-speech/blob/main/Start_Agent.md
  2. HuggingFace 模型库:https://huggingface.co/fishaudio/fish-agent-v0.1-3b

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

### fish-speech API 调用示例及参数说明 对于 `fish-speech` 这样的库,其主要功能在于提供了一个集成自动语音识别 (ASR) 文本转语音 (TTS) 的框架。为了展示如何调用此库中的API并解释相关参数的意义,下面给出一段Python代码示例来启动Fish Agent演示[^2]。 #### 初始化 Fish Agent 并设置参数 ```python from fish_agent import FishAgent agent = FishAgent() ``` 这段简单的初始化语句创建了一个名为 `agent` 的对象实例,它代表了可以执行各种操作的代理实体。通过这个对象,能够访问更多具体的方法来进行实际的任务处理。 #### 配置输入输出模式 ```python agent.set_input_mode('microphone') # 或者 'text' agent.set_output_mode('speaker') # 或者 'file', 'stream' ``` 这里展示了两种重要的配置选项——输入源(`set_input_mode`)输出目标(`set_output_mode`)的选择。前者决定了是从麦克风实时录音还是接收纯文本字符串;后者则指定了合成后的音频应该播放出来、保存成文件还是作为一个数据流返回给调用方。 #### 开始对话循环 ```python while True: result = agent.process() # 处理一次交互过程 if not result['continue']: # 如果不再继续,则退出循环 break print("会话结束") ``` 上述代码片段实现了基本的人机交互逻辑:在一个无限循环内不断调用 `process()` 方法完成一轮完整的交流(即先听取用户的指令再作出回应),直到收到停止信号为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值