Fast GraphRAG:微软推出高效的知识图谱检索框架,结合了知识图谱和 RAG 技术

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. Fast GraphRAG 是微软推出的一款高效的知识图谱检索框架。
  2. 它结合了 RAG 技术和知识图谱,支持动态数据生成、实时数据更新和智能探索。
  3. 框架设计考虑大规模运行的需求,支持异步处理和类型安全操作。

正文(附运行示例)

Fast GraphRAG 是什么

在这里插入图片描述

Fast GraphRAG 是微软推出的一款高效的知识图谱检索框架,旨在提供可解释性和高精度的代理驱动检索工作流。它结合了检索增强生成(RAG)技术和知识图谱,提升大型语言模型(LLMs)在处理私有数据和复杂数据集时的性能。Fast GraphRAG 无缝融入检索管道,提供高级 RAG 的强大功能,无需构建和设计 Agent 工作流程的开销。具备可解释和可调试的知识、快速、低成本、高效的特性,支持动态数据和增量更新。

Fast GraphRAG 的主要功能

  • 知识图谱可视化查询:支持用户在知识图谱上进行可视化查询,使数据检索和更新过程更加直观和易于管理。
  • 动态数据生成:支持动态数据生成,自动优化和生成图表,适应不同领域和本体的需求。
  • 实时数据更新:支持数据变化时的实时更新,确保信息的时效性和准确性。
  • 智能探索:基于 PageRank 的图形探索技术,提高检索的准确性和可靠性。
  • 异步和类型化操作:完全异步,具有完整的类型支持,使工作流程更加强大和可预测。
  • 可扩展性:框架设计考虑大规模运行的需求,无需大量的资源或成本。

Fast GraphRAG 的技术原理

  • 图形结构:Fast GraphRAG 用图形结构表示和存储知识,节点代表实体,边代表实体间的关系。
  • 检索增强生成(RAG):结合检索(Retrieval)和生成(Generation)的技术,检索相关知识增强生成的内容。
  • PageRank 算法:用 PageRank 算法进行智能探索,一种基于图的排名算法,用于评估节点的重要性。
  • 异步处理:支持异步处理,在不阻塞主线程的情况下执行任务,提高效率。
  • 类型系统:框架具有完整的类型系统,支持类型安全的操作,确保数据的一致性和准确性。

如何运行 Fast GraphRAG

安装

从 PyPi 安装(推荐)

pip install fast-graphrag

从源码安装

# 克隆仓库
git clone https://github.com/circlemind-ai/fast-graphrag
cd fast-graphrag
poetry install

快速启动

设置 OpenAI API 密钥:

export OPENAI_API_KEY="sk-..."

下载《圣诞颂歌》的文本文件:

curl https://raw.githubusercontent.com/circlemind-ai/fast-graphrag/refs/heads/main/mock_data.txt > ./book.txt

使用以下 Python 代码示例:

from fast_graphrag import GraphRAG

DOMAIN = "分析这个故事并识别角色。重点关注他们如何互动、探索的地点以及他们的关系。"

EXAMPLE_QUERIES = [
    "《圣诞颂歌》中圣诞节前夕的意义是什么?",
    "维多利亚时代的伦敦背景如何影响故事的主题?",
    "描述导致斯克鲁奇转变的一系列事件。",
    "狄更斯是如何利用不同的幽灵(过去、现在和未来)来引导斯克鲁奇的?",
    "狄更斯为什么选择将故事划分为‘章’而不是章节?"
]

ENTITY_TYPES = ["Character", "Animal", "Place", "Object", "Activity", "Event"]

grag = GraphRAG(
    working_dir="./book_example",
    domain=DOMAIN,
    example_queries="\n".join(EXAMPLE_QUERIES),
    entity_types=ENTITY_TYPES
)

with open("./book.txt") as f:
    grag.insert(f.read())

print(grag.query("谁是斯克鲁奇?").response)

下一次从同一个工作目录初始化 Fast GraphRAG 时,它将保留所有知识。

资源

  1. 项目官网:https://circlemind.co
  2. GitHub 仓库:https://github.com/circlemind-ai/fast-graphrag
  3. 社区:https://discord.gg/McpuSEkR
  4. 报告 Bug:https://github.com/circlemind-ai/fast-graphrag/issues/new?assignees=&labels=&projects=&template=🐞-bug-report.md&title=
  5. 请求功能:https://github.com/circlemind-ai/fast-graphrag/issues/new?assignees=&labels=&projects=&template=💡-feature-request.md&title=

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值