VideoRefer:阿里达摩院开源视频对象感知与推理框架,可集成 VLLM 提升其空间和时间理解能力

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:支持细粒度视频对象理解、复杂关系分析、推理预测及多模态交互。
  2. 技术:基于多智能体数据引擎和空间-时间对象编码器,实现高质量视频指令数据生成与对象级特征提取。
  3. 应用:适用于视频剪辑、教育、安防监控、交互式机器人及电子商务等多个领域。

正文(附运行示例)

VideoRefer 是什么

videorefer

VideoRefer 是浙江大学与阿里达摩学院联合推出的视频对象感知与推理技术,旨在增强视频大型语言模型(Video LLMs)的空间-时间理解能力。该技术能够对视频中的任意对象进行细粒度的感知和推理,支持单帧和多帧输入,适用于多种复杂场景。

VideoRefer 的核心组件包括 VideoRefer-700K 数据集、VideoRefer 模型和 VideoRefer-Bench 基准。通过这些组件,VideoRefer 能够实现对视频内容的精确理解、推理和检索,推动细粒度视频理解技术的发展。

VideoRefer 的主要功能

  • 细粒度视频对象理解:对视频中的任意对象进行精确感知,捕捉对象的空间位置、外观特征和运动状态。
  • 复杂关系分析:分析视频中多个对象之间的交互和相对位置变化,理解对象之间的相互作用。
  • 推理与预测:基于视频内容进行推理,预测对象的未来行为或事件发展趋势。
  • 视频对象检索:根据用户指定的条件,从视频中检索出相关对象或场景片段。
  • 多模态交互:支持基于文本指令、语音提示或图像标记的多模态交互,理解用户需求并提供相应的视频理解结果。

VideoRefer 的技术原理

  • 多智能体数据引擎:通过多个专家模型协同工作,自动生成高质量的对象级视频指令数据,为模型训练提供多样化支持。
  • 空间-时间对象编码器:设计多功能的空间-时间对象编码器,提取单帧对象的区域特征,并在多帧模式下捕捉对象的时间连续性。
  • 融合与解码:将视频的全局场景特征、对象级特征和语言指令融合,送入预训练的大型语言模型进行解码,生成细粒度语义理解结果。
  • 全面评估基准:构建 VideoRefer-Bench 评估基准,从多个维度评估模型在视频指代任务中的性能。

如何运行 VideoRefer

1. 环境配置

首先,确保满足以下基本依赖:

  • Python >= 3.8
  • Pytorch >= 2.2.0
  • CUDA Version >= 11.8
  • transformers == 4.40.0
  • tokenizers == 0.19.1

安装所需依赖:

git clone https://github.com/DAMO-NLP-SG/VideoRefer
cd VideoRefer
pip install -r requirements.txt
pip install flash-attn==2.5.8 --no-build-isolation
2. 运行示例

参考 infer.ipynb 中的示例代码,使用 VideoRefer 模型进行单视频推理。该示例支持单帧和多帧模式。

3. 集成 SAM2

为了更好地使用 VideoRefer,建议集成 SAM2

git clone https://github.com/facebookresearch/sam2.git && cd sam2
SAM2_BUILD_CUDA=0 pip install -e ".[notebooks]"

然后,下载 sam2.1_hiera_large.ptcheckpoints 目录。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值