MedRAX:专注于胸部X光检查的AI医学推理智能体,帮助医生快速解读胸部X光片

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


大家好,我是蚝油菜花,今天跟大家分享一下 MedRAX 这个由多所知名机构联合推出的AI医学推理智能体,专为胸部X光检查和解决复杂医学问题而设计。

🚀 快速阅读

MedRAX 是一款用于胸部X光检查的医学推理AI智能体。

  1. 核心功能:整合多种最先进的分析工具,支持多模态推理和动态任务分解。
  2. 技术原理:基于LangChain和LangGraph框架,使用具备视觉能力的GPT-4o作为核心语言模型。

MedRAX 是什么

MedRAX(Medical Reasoning Agent for Chest X-ray)是专门为胸部X光检查设计的医学推理AI智能体。通过整合最先进的胸部X光分析工具和多模态大型语言模型,MedRAX能够动态利用这些模型解决复杂的医学查询问题,无需额外训练。MedRAX的核心架构基于LangChain和LangGraph框架,使用具备视觉能力的GPT-4o作为核心语言模型,支持本地和云端部署,并通过Gradio构建了生产级的用户界面。

MedRAX的目标是通过多模态推理和多步骤任务分解,帮助医生快速准确地解读胸部X光片,从而提高诊断效率和准确性。

MedRAX 的主要功能

  • 多模态医学推理:整合多种最先进的胸部X光(CXR)分析工具和多模态大型语言模型,动态利用这些模型解决复杂的医学查询问题,无需额外训练。
  • 多步骤推理支持:将复杂的医疗查询分解为多个子任务,并逐一解决,包括检测、分类、定位、比较、关系分析、诊断和特征描述。
  • 强大的工具集成:集成了多种工具,如视觉问答(CheXagent和LLaVA-Med)、图像分割(MedSAM和PSPNet)、病变定位(Maira-2)、报告生成(SwinV2 Transformer)、疾病分类(DenseNet-121)以及X光生成(RoentGen)等。
  • 用户友好界面与灵活部署:提供了一个生产级的用户界面,支持本地和云端部署,能够满足不同医疗场景下的隐私和安全需求。
  • 性能验证与基准测试:通过ChestAgentBench基准测试,MedRAX在2500个复杂医疗查询中表现出色,覆盖检测、分类、定位等多个核心能力,其性能优于开源和专有模型。

MedRAX 的技术原理

MedRAX-figure

  • 核心架构:MedRAX基于LangChain和LangGraph框架构建,使用具备视觉能力的GPT-4o作为核心语言模型。架构支持动态工具编排,能根据复杂的医疗查询自动选择最优的工具组合。
  • 多模态推理与工具集成:MedRAX整合了多种工具,实现多模态推理和精准诊断:
    • 视觉问答(Visual QA):基于CheXagent和LLaVA-Med进行复杂的视觉理解和医学推理。
    • 图像分割(Segmentation):使用MedSAM和在ChestX-Det上训练的PSPNet模型进行精确的解剖结构识别。
    • 病变定位(Grounding):通过Maira-2在医学图像中精确定位特定发现。
    • 报告生成(Report Generation):使用在CheXpert Plus上训练的SwinV2 Transformer生成详细的医学报告。
    • 疾病分类(Disease Classification):基于TorchXRayVision中的DenseNet-121检测18种病理类别。
    • X光生成(X-ray Generation):使用RoentGen生成合成的胸部X光。
  • 动态推理与多步骤任务分解:MedRAX能将复杂的医疗查询分解为多个子任务,逐一解决。例如,可以识别病变(检测)、对病变进行分类(分类)、精确定位病变位置(定位)、比较病变的变化(比较)、分析病变之间的关系(关系)、进行临床诊断(诊断)以及描述病变特征(特征描述)。

如何运行 MedRAX

1. 安装依赖
# Clone the repository
git clone https://github.com/bowang-lab/MedRAX.git
cd MedRAX

# Install package
pip install -e .
2. 启动 Gradio 界面
# Start the Gradio interface
python main.py

如果遇到权限问题,可以尝试以下命令:

sudo -E env "PATH=$PATH" python main.py
3. 设置模型目录

确保在 main.py 中设置 model_dir,指向你希望下载或已经存放工具权重的目录。同时,确保在 .env 文件中配置你的 OpenAI API 密钥。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值