AppAgentX:告别重复点击!自我进化式GUI代理自动生成高级操作,效率翻倍

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


📱 「手机党福音!西湖大学黑科技让App自动进化:重复操作秒变一键指令」

大家好,我是蚝油菜花。你是否经历过这些崩溃瞬间——

  • 👉 每天重复点击20次「下一步」安装测试APP,手指快磨出火星
  • 👉 跨应用搬运数据要在5个界面来回切换,漏一步就前功尽弃
  • 👉 新装软件总要重新适应操作逻辑,学习成本高过使用价值…

今天介绍的 西湖大学AppAgentX 正在掀起GUI交互革命!这个自我进化式AI代理能像人类一样:

  • ✅ 智能总结操作模式:自动把重复点击打包成「一键指令」
  • ✅ 跨应用无缝衔接:从网页抓数据到填Excel全程自动化
  • ✅ 即插即用零配置:纯视觉识别操作,不依赖任何API接口

已有测试团队用它把功能测试流程缩短70%,下个视频将实测教你把手机变成 「会进化的智能终端」

🚀 快速阅读

AppAgentX 是西湖大学推出的新型自我进化式 GUI 代理框架,通过记忆和进化机制提升智能手机交互的效率和智能性。

  1. 核心功能:自动归纳高效操作模式,减少重复计算,支持复杂任务和跨应用操作。
  2. 技术原理:基于记忆机制和进化机制,结合链式知识框架实现行为的持续优化和进化。

AppAgentX 是什么

AppAgentX

AppAgentX 是西湖大学推出的新型自我进化式 GUI(图形用户界面)代理框架,基于从执行历史中抽象出高级动作提升代理在智能手机交互中的效率和智能性。AppAgentX结合记忆机制和进化机制,记录任务执行过程,识别重复操作序列,替换为更高效的高级动作,减少对逐级推理的依赖。

AppAgentX 基于链式知识框架实现行为的持续优化,增强适应性和效率。AppAgentX在多个基准测试中显著优于现有方法,展现出更高的准确性和效率,为智能代理在复杂任务执行中的应用提供新的思路。

AppAgentX 的主要功能

  • 自动归纳高效操作模式:检测任务执行中的重复性操作,自动总结为高级别的“一键”操作,简化操作流程。
  • 减少重复计算,提升执行效率:基于记忆和复用执行策略,避免重复推理,让任务执行更高效。
  • 基于视觉的通用操作能力:依赖屏幕视觉信息进行操作,无需后端API支持,在不同软件和设备上通用,实现“即插即用”。
  • 支持复杂任务和跨应用操作:像人类一样操作各种应用程序,支持复杂的跨应用任务,例如从网页爬取信息后填入Excel,或在多个软件之间联动操作。

AppAgentX 的技术原理

  • 记忆机制:基于链式结构记录任务执行历史,包括页面节点和元素节点。页面节点记录UI页面的描述和元素信息,元素节点记录具体交互细节。用LLM生成页面和元素的功能描述,合并重复描述用形成统一记录。
  • 进化机制:分析任务执行历史,识别重复的低级操作序列。将重复序列抽象为高级动作(称为“快捷节点”),替代原有的低级操作。扩展动作空间,将高级动作纳入代理的操作集,提升执行效率。
  • 链式知识框架:用基于图的存储结构(如Neo4j)记录任务执行的节点和关系。节点包括页面、元素和高级动作,关系表示它们之间的交互和转换。用链式结构实现行为的持续优化和进化。
  • 任务执行流程:在任务执行时,代理基于视觉匹配识别当前页面和元素。若匹配到高级动作,直接执行对应的低级操作序列,减少推理步骤。若高级动作不适用,回退到低级动作空间,确保任务仍能完成。

如何运行 AppAgentX

1. LLM 设置和依赖项

本项目使用 LangChain 和 LangGraph 构建代理框架。建议按照其官方网站上的建议进行安装。对于其他依赖项,请使用 pip install -r requirements.txt。对于 LLM 配置,请在 config.py 文件中调整相关设置。

2. 数据库部署和连接

我们使用 Neo4j 作为代理的记忆存储,利用其 Cypher 查询语言来促进节点检索。对于向量存储,使用 Pinecone。确保在 config.py 文件中配置了必要的 API 和密钥。有关更多信息,请访问 Neo4j 官方网站Pinecone 官方网站

3. 屏幕识别和特征提取部署

为了简化部署,我们使用 Docker 将屏幕识别和特征提取服务容器化。请参考后端文件夹中的 README 文件以启动容器。请注意,这可能需要 Docker 的 GPU 支持;请查阅 Docker 的官方文档进行配置。这种模块化方法允许轻松替换不同的屏幕解析和特征提取工具,显著增强模型的可扩展性。如果需要部署,请参考当前项目后端文件夹中的 README 文件

4. 启动演示

要使用此项目,首先需要配置 ADB(Android 调试桥) 以将 Android 设备连接到计算机。

连接方式一:设置 ADB 并连接 Android 设备

1. 在 PC 上安装 ADB

下载并安装 Android Debug Bridge (adb)——一个命令行工具,可实现 PC 与 Android 设备之间的通信。

2. 在 Android 设备上启用 USB 调试

转到 设置 > 开发者选项 并启用 USB 调试

3. 使用 USB 线将设备连接到 PC

连接方式二:使用模拟器代替物理设备(可选)

如果您没有实际的 Android 设备但仍想尝试 AppAgent,我们建议使用 Android Studio 中的内置模拟器:

  1. 下载并安装 Android Studio
  2. 在 Android Studio 中打开 设备管理器 以创建并启动模拟器。
  3. 通过下载 APK 文件并将其拖入模拟器窗口来安装应用程序。
  4. AppAgent 可以像在真实设备上一样检测和操作模拟器上的应用程序。

启动 Gradio

设置好设备或模拟器后,您可以启动项目。我们使用 Gradio 作为前端界面。使用以下命令之一启动演示:

python demo.py

gradio demo.py

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值