❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!
🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦
🚀 「论文生产力革命!港大开源AI科研代理:输入想法=自动出论文+实验报告」
大家好,我是蚝油菜花。你是否经历过这些崩溃瞬间——
- 👉 凌晨3点还在手动爬取文献,咖啡续命到心悸
- 👉 实验方案改了20版,跑代码时发现参数全错
- 👉 导师催稿在即,论文结论段写了删删了写…
今天要揭秘的 港大AI-Researcher ,正在掀起科研界的工业革命!这个由香港大学数据科学实验室打造的开源神器,能实现:
- ✅ 文献综述自动化:5分钟扫荡arXiv+GitHub最新成果
- ✅ 智能实验设计:自动验证算法并生成可视化报告
- ✅ 论文全流程托管:从引言到参考文献一键生成SCI级文稿
已有博士生用它3天完成顶会投稿,连评审都惊叹「这实验设计比人类更严谨」。想知道如何用AI自动「肝」出高质量论文?接下来的保姆级教程千万别眨眼!
🚀 快速阅读
AI-Researcher 是一个基于大型语言模型(LLM)的自动化科研工具。
- 核心功能:支持文献综述、算法设计、实验验证和论文撰写等全流程自动化。
- 技术原理:基于多模态数据集成、LLM 智能代理和自动化实验验证等技术,实现科研任务的高效处理。
AI-Researcher 是什么
AI-Researcher 是香港大学数据科学实验室推出的开源自动化科研工具,旨在通过大型语言模型(LLM)代理实现从研究想法到论文发表的全流程自动化。该工具支持用户在两种模式下操作:一是提供详细的研究想法描述,系统据此生成实现策略;二是提供参考文献,系统自主生成创新想法并实施。
AI-Researcher 集成了文献综述、想法生成、算法设计与验证、结果分析和论文撰写等核心功能,支持多领域研究,并基于开源的基准测试套件评估研究质量。无论是计算机视觉、自然语言处理,还是数据挖掘等领域,AI-Researcher 都能提供高效的科研支持。
AI-Researcher 的主要功能
- 文献综述:系统自动收集和分析特定领域的现有研究文献,基于检索学术数据库(如 arXiv、IEEE Xplore 等)和代码平台(如 GitHub、Hugging Face)获取高质量的研究资源。
- 算法验证与优化:自动进行实验设计、执行和结果分析,评估算法的性能,根据反馈进行优化,确保算法的有效性和可靠性。
- 论文撰写:自动生成完整的学术论文,包括研究背景、方法、实验结果和讨论等内容。
- 多领域支持与基准测试:支持计算机视觉、自然语言处理、数据挖掘等多个领域的研究,提供标准化的基准测试框架,用于评估研究质量和创新性。
AI-Researcher 的技术原理
- 多模态数据集成与处理:系统基于自动化工具从学术数据库和代码平台收集文献、代码和数据集,利用自然语言处理(NLP)技术对文本内容进行解析和分析,提取关键信息。
- 基于LLM的智能代理:基于大型语言模型(LLM)作为核心驱动,利用预训练模型(如 OpenAI 的 GPT 或 DeepSeek 的模型)生成高质量的文本内容,包括研究想法、算法设计和论文撰写。
- 自动化实验与验证:系统基于容器化技术(如 Docker)和自动化脚本,实现算法的快速部署和实验执行。系统自动设计实验流程、收集结果,基于机器学习技术对结果进行分析和优化。
- 多级任务处理与模块化设计:支持两种任务级别:用户提供详细想法(Level 1)和仅提供参考文献(Level 2)。系统根据任务级别调用不同的模块,实现从想法生成到论文撰写的全流程自动化。
如何运行 AI-Researcher
AI-Researcher 是一个全自动化科学发现系统,它通过先进的 AI 代理技术重塑传统研究范式,为研究人员提供从概念到发表的无缝支持。下面将为您详细介绍如何运行 AI-Researcher,并结合具体示例演示其主要功能。
环境准备
安装方式一:通过源代码安装
git clone https://github.com/HKUDS/AI-Researcher.git
cd AI-Researcher
pip install -e .
安装方式二:通过 Docker 安装
确保系统已安装 Docker,然后执行以下命令:
docker pull tjbtech1/paperagent:latest
设置 LLM API 密钥
创建环境变量文件 .env
,并设置 API 密钥:
OPENAI_API_KEY=
DEEPSEEK_API_KEY=
ANTHROPIC_API_KEY=
GEMINI_API_KEY=
HUGGINGFACE_API_KEY=
GROQ_API_KEY=
XAI_API_KEY=
运行示例
以下是 AI-Researcher 的运行示例,展示了其在不同研究任务中的应用。
示例 1:矢量量化(Vector Quantized)
输入:提示(Prompt)
用户可以提供详细的研究想法描述,系统将根据描述生成实现策略。以下是一个示例输入:
1. 提出的模型旨在通过解决非可微矢量量化层的梯度传播问题,提升矢量量化变分自编码器(VQ-VAE)的性能。
2. 核心方法包括:
- 旋转和缩放变换:调整编码器输出以对齐最近的码本向量,而不改变前向传播输出。
- 梯度传播方法:确保梯度从解码器流向编码器,同时保持梯度与码本向量之间的角度。
- 码本管理:通过连接编码器输出与码本向量的关系,避免码本崩溃并提高利用率。
运行命令
current_dir=$(dirname "$(readlink -f "$0")")
cd $current_dir
export DOCKER_WORKPLACE_NAME=workplace_paper
export BASE_IMAGES=tjbtech1/paperagent:latest
export COMPLETION_MODEL=claude-3-5-sonnet-20241022
export CHEEP_MODEL=claude-3-5-haiku-20241022
category=vq
instance_id=one_layer_vq
export GPUS='"device=0,1"'
python run_infer_plan.py --instance_path ../benchmark/final/${category}/${instance_id}.json --container_name paper_eval --task_level task1 --model $COMPLETION_MODEL --workplace_name workplace --cache_path cache --port 12372 --max_iter_times 0 --category ${category}
输出
运行完成后,系统将生成一份完整的论文(PDF 文件)以及研究工作区的代码实现。您可以点击以下链接查看示例输出:
- 论文:https://github.com/HKUDS/AI-Researcher/examples/rotation_vq/paper.pdf
- 代码实现:https://github.com/HKUDS/AI-Researcher/examples/rotation_vq/project
示例 2:推荐系统(Recommendation)
输入:提示(Prompt)
1. 提出的模型旨在通过利用异构关系信息改进推荐系统中的用户-物品交互预测。
2. 核心技术包括:
- 异构图神经网络(GNN):用于嵌入初始化和消息传递。
- 对比学习:通过跨视图对比学习框架增强表示学习。
- 元网络:提取个性化知识,促进辅助视图与用户-物品交互视图之间的知识转移。
运行命令
current_dir=$(dirname "$(readlink -f "$0")")
cd $current_dir
export DOCKER_WORKPLACE_NAME=workplace_paper
export BASE_IMAGES=tjbtech1/paperagent:latest
export COMPLETION_MODEL=claude-3-5-sonnet-20241022
export CHEEP_MODEL=claude-3-5-haiku-20241022
category=recommendation
instance_id=heterogeneous_gnn
export GPUS='"device=0,1"'
python run_infer_plan.py --instance_path ../benchmark/final/${category}/${instance_id}.json --container_name paper_eval --task_level task1 --model $COMPLETION_MODEL --workplace_name workplace --cache_path cache --port 12372 --max_iter_times 0 --category ${category}
输出
- 论文:https://github.com/HKUDS/AI-Researcher/examples/hgcl/paper.pdf
- 代码实现:https://github.com/HKUDS/AI-Researcher/examples/hgcl/project
示例 3:论文写作(Paper Writing)
在研究代理完成实验后,您可以使用以下命令生成论文:
#!/bin/bash
cd path/to/AI-Researcher/paper_agent
export OPENAI_API_KEY=sk-SKlupNntta4WPmvDCRo7uuPbYGwOnUQcb25Twn8c718tPpXN
research_field=vq
instance_id=rotated_vq
python path/to/AI-Researcher/paper_agent/writing.py --research_field ${research_field} --instance_id ${instance_id}
请注意,并非所有 LLM API 密钥都是必需的,只需设置你打算使用的 LLM 的 API 密钥。。
资源
- GitHub 仓库:https://github.com/HKUDS/AI-Researcher
❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!
🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦