❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!
🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦
🌀 「别让建模软件吃显卡!AI把3D生成压缩到一次眨眼」
大家好,我是蚝油菜花。这些数字创作的崩溃瞬间你是否正在经历——
- 👉 为游戏角色建模连续渲染8小时,显卡温度能煎牛排
- 👉 客户临时要改产品外观,传统流程让项目进度直接坠崖
- 👉 想用AI生成3D模型,结果输出像被黑洞揉皱的纸团…
今天要炸裂设计界的 TripoSR ,正在重写三维创作法则!这把「时空剪刀」:
- ✅ 量子级速度:0.5秒吞图吐3D,比眨眼还快2倍
- ✅ 平民造物主:MacBook都能跑,开源协议商业随便用
- ✅ 细节强迫症:布料褶皱到金属反光,物理级精度全保留
已有动画大厂用它日更角色,独立开发者靠AI实现电影级场景——你的创意,是时候突破「三维次元壁」了!
🚀 快速阅读
TripoSR是一个基于Transformer架构的开源3D生成模型。
- 核心功能:支持从单张2D图像0.5秒生成高质量3D模型,优于当前开源方案
- 技术原理:采用三平面-NeRF表示和重要性采样策略,实现细节精准重建
TripoSR 是什么
TripoSR是由Stability AI和VAST联合推出的开源3D生成模型,能在不到0.5秒内从单张2D图像快速生成高质量的3D模型。模型基于Transformer架构,采用了大型重建模型(LRM)的原理,对数据处理、模型设计和训练技术进行了多项改进。
TripoSR在多个公共数据集上的表现优于其他开源替代方案,支持在没有GPU的设备上运行,极大地降低了使用门槛。采用MIT许可证,支持商业、个人和研究使用。
TripoSR 的主要功能
- 单张图片生成3D对象:能从用户提供的单张2D图片中自动创建三维模型
- 快速转换:在NVIDIA A100 GPU上生成仅需0.5秒
- 高质量渲染:确保模型的细节和真实感
- 适应多种图像:能处理静态图像和复杂图像
TripoSR 的技术原理
- 架构设计:基于LRM(Large Reconstruction Model)改进
- 图像编码器:使用DINOv1视觉变换器提取图像特征
- 三平面解码器:将特征转换为三平面-NeRF表示
- 神经辐射场:通过MLP预测3D点颜色和密度
- 训练技术:采用掩码损失函数和本地渲染监督优化
如何运行 TripoSR
安装
- Python >= 3.8
- 安装CUDA和匹配版本的PyTorch
- 升级setuptools:
pip install --upgrade setuptools
- 安装依赖:
pip install -r requirements.txt
手动推理
python run.py examples/chair.png --output-dir output/
单图像推理约需6GB显存,支持--bake-texture
参数输出纹理。
本地Gradio应用
python gradio_app.py
资源
- GitHub 仓库:https://github.com/VAST-AI-Research/TripoSR
- HuggingFace 仓库:https://huggingface.co/stabilityai/TripoSR
❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!
🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦