2023-11-7学习笔记

本文概述了深度学习在道路小目标检测中的应用,重点关注数据增强、多尺度策略、特征融合等优化方法,强调了小目标检测的难点如特征提取、背景干扰和数据集不足,并讨论了Yolov4的Mosaic方法和IoU阈值对小目标的影响。
摘要由CSDN通过智能技术生成

一、今日学习内容


1.基于深度学习的道路小目标检测综述

摘要:

本文讨论了基于深度学习的道路小目标检测方法。作者从数据增强、多尺度策略、生成超分辨率细节信息、加强上下文信息联系、改进损失函数等5个方面对优化方法进行了总结,并评估了各类方法的性能。文章指出,在大型复杂数据集中,基于多尺度策略的优化方法可以提高小目标检测的精度。未来的研究方向包括设计更优和更轻量化的检测模型、构建小目标数据集以及改进训练策略。

感想:

收集整理了一些信息,不太成体系,随便贴下:

1.小目标定义:
其一,若目标
的尺寸低于原图像尺寸的 0. 1 倍,就认为是相对小目标。
(分类整张图一般很难区分)

;其二,在 MS-COCO(Microsoft 
common objects in context)数据集中,若目标的尺寸
小于32 × 32像素,就认为是绝对小目标

2.小目标为什么难以检测:
小目标可视化特征不明显,可利用信息较少。

特征提取问题。在目标检测中,特征提取的好坏直接影响最终的检测效果,与大尺度目标相比,小目标的特征更难提取;在检测模型中,经过池化后小目标的某些特性会被删除,给检测带来一定的挑战

背景干扰问题。复杂环境下的小目标检测会受到光照、复杂地理元素、遮挡和聚集等因素的干扰,难以将它们与背景或相似的目标进行区分。因此,如何有效地改善复杂背景干扰也是小目标检测面临的问题

小目标数据集短缺。(小目标样本量较少?)


3.通过实验对比,若只复制单个小目标,虽然会提高检测小尺度的目标的精度,但会对大尺度的目标产生不好的影响,通过实验验证,将每个小目标进行复制粘贴的效果最好。

4.目标尺度的尺度匹配方法 Scale Match
提升巨大,值得研究

5.Yolov4提出的Mosaic问题:

 YOLOv4(Bochkovskiy 等 ,2020)中 提 出 了Mosaic 数据增强方法,为丰富数据集且增加更多的小目标,该方法每次读取4幅不同的图像,对其采用
翻 转、缩 放 和 裁 剪 等 方 式 进 行 随 机 拼 接。由 于
Mosaic 方法直接计算 4 幅图像数据,因此减少了图
形处理单元(graphics processing unit,GPU)的计算,但该方法也有一些缺点,若原本的数据集本身就含
有较多的小目标,使用该方法会使得图像中小目标
尺 寸 更 小,导 致 模 型 的 泛 化 能 力 变 差

6.多尺度融合方法
FPN和PANet通过自底而上的路径增强和横向
连接实现了特征融合,表明高层信息和底层信息对
目标检测是互补的

几个重点思路:
1.使用resnet而不是vgg16来卷积提取,甚至使用Resnet101
2.相邻层的上下采样融合,自底向上,自顶向下
3.横向连接 ,将低分辨率强语义特征与高分辨率弱语义
弱特征相结合,增强特征图的信息
4.对原始数据图像进行卷积下采样,获得不同分辨率的特征图像,然后将得到图像上采样至 224 × 224像素进行训练,验证了下采样提高小目标的检测效果。
5.验证感受野大小与检测效果之间的联系,证明大感受野对大尺度目标的检测效果更好,小感受野的检测效果则与其相反

7.4)交并比(IoU)阈值的设置对小目标不合理。
在目标检测中,交并比是由目标的 bounding box 与
ground truth 计算得来的,而检测中的匹配策略也是
通过 IoU 阈值大小来划分正负样本的。小目标 IoU
较小,而通常的 IoU 阈值更加适用于大、中尺度目
标,会给较小目标的定位精度带来一定影响。

一、今日感想

这两天有点忙的不知所云,开开会时间都过去了,代码工作推进比较慢。

接下来几天需要聚焦开发和文档工作了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值