39. 组合总和
题目:
给定一个无重复元素的数组 candidates
和一个目标数 target
,找出 candidates
中所有可以使数字和为 target
的组合。
candidates
中的数字可以无限制重复被选取。
说明:
- 所有数字(包括
target
)都是正整数。 - 解集不能包含重复的组合。
示例:
输入:candidates = [2,3,6,7], target = 7,
所求解集为:
[
[7],
[2,2,3]
]
回溯+剪枝
典型的回溯题目,因为每次都可以重复选择,因此每个循环里的递归 s t a r t start start值不需要 + 1 +1 +1,最简单的,不考虑剪枝的版本:
class Solution {
List<Integer> path = new ArrayList<>();
List<List<Integer>> res = new ArrayList<>();
public void backtrack(int[] candidates, int start, int target){
if(target < 0) return;
if(target == 0) {
res.add(new ArrayList<>(path));
return;
}
for(int i = start; i < candidates.length; i++) {
path.add(candidates[i]);
backtrack(candidates, i, target - candidates[i]);
path.remove(path.size() - 1);
}
}
public List<List<Integer>> combinationSum(int[] candidates, int target) {
backtrack(candidates, 0, target);
return res;
}
}
因为回溯复杂度比较高,因此想剪枝的话可以先进行一个排序,如果当前 t a r g e t target target减掉一个小的值已经小于 0 0 0了,就不需要继续进行下去了。以下是简单的剪枝修改后的代码:
class Solution {
List<Integer> path = new ArrayList<>();
List<List<Integer>> res = new ArrayList<>();
public void backtrack(int[] candidates, int start, int target){
if(target < 0) return;
if(target == 0) {
res.add(new ArrayList<>(path));
return;
}
for(int i = start; i < candidates.length; i++) {
if(target - candidates[i] < 0) break;
path.add(candidates[i]);
backtrack(candidates, i, target - candidates[i]);
path.remove(path.size() - 1);
}
}
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
backtrack(candidates, 0, target);
return res;
}
}
剪枝效果很明显。
复杂度分析
-
时间复杂度: O ( ? ) O(?) O(?)
比较难给出,官方答案 O ( n × 2 n ) O(n \times 2^n) O(n×2n)。
-
空间复杂度: O ( t a r g e t ) O(target) O(target)
最差情况下都是 1 1 1,需要递归栈深度为 O ( t a r g e t ) O(target) O(target)。