练习6.1 邻接矩阵存储图的深度优先遍历 (20分)(DFS)
试实现邻接矩阵存储图的深度优先遍历。
函数接口定义:
void DFS( MGraph Graph, Vertex V, void (*Visit)(Vertex) );
其中MGraph是邻接矩阵存储的图,定义如下:
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv; /* 顶点数 */
int Ne; /* 边数 */
WeightType G[MaxVertexNum][MaxVertexNum]; /* 邻接矩阵 */
};
typedef PtrToGNode MGraph; /* 以邻接矩阵存储的图类型 */
函数DFS应从第V个顶点出发递归地深度优先遍历图Graph,遍历时用裁判定义的函数Visit访问每个顶点。当访问邻接点时,要求按序号递增的顺序。题目保证V是图中的合法顶点。
裁判测试程序样例:
#include <stdio.h>
typedef enum {false, true} bool;
#define MaxVertexNum 10 /* 最大顶点数设为10 */
#define INFINITY 65535 /* ∞设为双字节无符号整数的最大值65535*/
typedef int Vertex; /* 用顶点下标表示顶点,为整型 */
typedef int WeightType; /* 边的权值设为整型 */
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv; /* 顶点数 */
int Ne; /* 边数 */
WeightType G[MaxVertexNum][MaxVertexNum]; /* 邻接矩阵 */
};
typedef PtrToGNode MGraph; /* 以邻接矩阵存储的图类型 */
bool Visited[MaxVertexNum]; /* 顶点的访问标记 */
MGraph CreateGraph(); /* 创建图并且将Visited初始化为false;裁判实现,细节不表 */
void Visit( Vertex V )
{
printf(" %d", V);
}
void DFS( MGraph Graph, Vertex V, void (*Visit)(Vertex) );
int main()
{
MGraph G;
Vertex V;
G = CreateGraph();
scanf("%d", &V);
printf("DFS from %d:", V);
DFS(G, V, Visit);
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:给定图如下
5
输出样例:
DFS from 5: 5 1 3 0 2 4 6
先看一下百度百科对DFS的解释:
深度优先遍历图的方法是,从图中某顶点v出发:
(1)访问顶点v;
(2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;
(3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。当然,当人们刚刚掌握深度优先搜索的时候常常用它来走迷宫.事实上我们还有别的方法,那就是广度优先搜索(BFS).
然后我来模拟一下题目的过程:
1、从5开始搜索,按从小到大的顺序搜索:首先搜索到1,标记,然后递归从1搜索;
2、节点1遍历到3,3被标记,开始搜索,然后依次访问到0和2,标记;
3、与2相连的还有3和5,但是3和5已经被标记过了,回溯到0,继续访问4,标记;
4、4节点和5相连,但是5已经被标记过了,不再访问,依次回溯到0->3->1->5节点;
5、与5相连的还有2和4,2和4已被访问,于是访问6,标记;
6、6没有与其他节点相连,回溯至5,遍历结束。
DFS伪代码:
DFS(当前被访问的节点pos)
{
pos被标记访问过
遍历与pos相连的节点(有边相连)
如果这个节点没有被访问过
搜索(DFS)当前节点
}
DFS题目代码
void DFS( MGraph Graph, Vertex V, void (*Visit)(Vertex) )//Graph表示邻接矩阵存储的图,V表示当前访问的节点。第三个参数为输出节点的函数
{
int w;
Visit(V);//访问到V,输出
Visited[V]=true;//标记V被访问过,此后不再访问
for(w=0;w<Graph->Nv;w++){ //数据是0到Graph->Nv(顶点数点数),访问每个节点
if(Graph->G[V][w]<INFINITY&&Visited[w]==false){//如果当前节点V与遍历的节点w有边相连,且w没有被访问过
DFS(Graph,w,Visit);//从w开始搜索访问
}
}
}
练习6.2 邻接表存储图的广度优先遍历 (20分)(BFS)
试实现邻接表存储图的广度优先遍历。
函数接口定义:
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) );
其中LGraph是邻接表存储的图,定义如下:
/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV; /* 邻接点下标 */
PtrToAdjVNode Next; /* 指向下一个邻接点的指针 */
};
/* 顶点表头结点的定义 */
typedef struct Vnode{
PtrToAdjVNode FirstEdge; /* 边表头指针 */
} AdjList[MaxVertexNum]; /* AdjList是邻接表类型 */
/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv; /* 顶点数 */
int Ne; /* 边数 */
AdjList G; /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */
函数BFS应从第S个顶点出发对邻接表存储的图Graph进行广度优先搜索,遍历时用裁判定义的函数Visit访问每个顶点。当访问邻接点时,要求按邻接表顺序访问。题目保证S是图中的合法顶点。
裁判测试程序样例:
#include <stdio.h>
typedef enum {false, true} bool;
#define MaxVertexNum 10 /* 最大顶点数设为10 */
typedef int Vertex; /* 用顶点下标表示顶点,为整型 */
/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV; /* 邻接点下标 */
PtrToAdjVNode Next; /* 指向下一个邻接点的指针 */
};
/* 顶点表头结点的定义 */
typedef struct Vnode{
PtrToAdjVNode FirstEdge; /* 边表头指针 */
} AdjList[MaxVertexNum]; /* AdjList是邻接表类型 */
/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv; /* 顶点数 */
int Ne; /* 边数 */
AdjList G; /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */
bool Visited[MaxVertexNum]; /* 顶点的访问标记 */
LGraph CreateGraph(); /* 创建图并且将Visited初始化为false;裁判实现,细节不表 */
void Visit( Vertex V )
{
printf(" %d", V);
}
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) );
int main()
{
LGraph G;
Vertex S;
G = CreateGraph();
scanf("%d", &S);
printf("BFS from %d:", S);
BFS(G, S, Visit);
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:给定图如下
2
输出样例:
BFS from 2: 2 0 3 5 4 1 6
百度百科中解释BFS的实现:
广度优先搜索使用队列(queue)来实现,整个过程也可以看做一个倒立的树形:
1、把根节点放到队列的末尾。
2、每次从队列的头部取出一个元素,查看这个元素所有的下一级元素,把它们放到队列的末尾。并把这个元素记为它下一级元素的前驱。
3、找到所要找的元素时结束程序。
4、如果遍历整个树还没有找到,结束程序。
我来模拟一下题目的过程:
1、首先把第一个访问的节点2加入队列,标记被访问过;
2、与2相连的节点有0,3,5,加入队列并标记访问过;
3、与2相连的有2,3,4,但是2和3已经被标记了,于是访问4,标记;
4、与4相连的还有5,5也被标记过了,不再访问,
5、此时队列中还有3和5,由3访问到1,5访问到6,程序结束。
BFS伪代码:
BFS(需要访问的节点S)
{
定义队列
队列中加入S
S被标记访问过
当队列不为空时
取出队首的元素pos
输出pos,表示访问到pos
遍历与pos相连的节点(有边与pos相连)
如果当前节点没有被访问过
标记当前节点被访问过
加入队列
}
BFS题目代码
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) )//Graph表示邻接矩阵存储的图,V表示当前访问的节点。第三个参数为输出节点的函数
{
int queue[100],front=0,rear=0;//用数组表示队列,front表示队列首,rear表示队列尾
queue[++rear]=S;//队列存入访问的第一个节点S
Visited[S]=true;//标记S被访问过,以后不再访问
while(front!=rear){//当队列不为空时(首部没有到达尾部)
int pos=queue[++front];//取出队列首部节点
Visit(pos);//输出取出的节点
PtrToAdjVNode w;//定义邻接点w(题面中给出定义)
for(w=Graph->G[pos].FirstEdge;w!=NULL;w=w->Next){//依次访问与pos相连的节点
if(Visited[w->AdjV]==false){//如果这个节点没有被访问过
Visited[w->AdjV]=true;//标记这个节点被访问
queue[++rear]=w->AdjV;//把这个节点加入到队列中
}
}
}
}
最初写的代码,实现正规的队列:
#include<stdlib.h>
int maxsize=100;
typedef struct node *queue;
struct node{
int *data,front,rear,maxsize;
};
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) )
{
queue q=(queue)malloc(sizeof(struct node));
q->data=(int *)malloc(sizeof(int)*maxsize);
q->front=q->rear=0;
// add[q , S]; q->rear=(q->rear+1)%q->maxsize;
q->data[++q->rear]=S;
Visited[S]=true;
PtrToAdjVNode w;
while(q->front!=q->rear){
int v=q->data[++q->front];
Visit(v);
for(w=Graph->G[v].FirstEdge;w;w=w->Next){
if(!Visited[w->AdjV]){
q->data[++q->rear]=w->AdjV;
Visited[w->AdjV]=true;
}
}
}
}
DFS和BFS是数据结构的图论中最基础最重要的算法,图论中很多算法都是基于BFS和DFS实现的,因此应该好好理解和掌握这两种算法。