邻接矩阵的深度优先遍历(dfs)
描述:
共有N个城市编号1到N和M条路编号1到M。
第i条路可以从城市Ai通往通往Bi,但不能从Bi通往Ai。
你计划从某个城市出发经过X(X≥0)条路到某个城市,即计划从某个城市经过任意条路到另一个城市,终点可以是出发的城市。
请计算有多少对城市可以作为你的起点和终点。
输入:
第一行为N和M。
接下来M行,每行有一对城市Ai和和Bi;
输出:
请计算有多少对城市可以作为你的起点和终点。
数据范围:
2≤N≤2000
0≤M≤min(2000,N(N−1))
1≤Ai,Bi≤N
Ai≠Bi
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const ll maxx = 1e18;
const int N = 1e6+10;
const int p = 1e4;
const double eps = 1e-8;
int n,m;
int G[2001][2001];//邻接矩阵存图
int a,b,cnt;//全局变量 cnt 记录个数
bool flag[2001];//记录每个城市是否走过
void dfs(int k)
{
cnt++;
flag[k]=1;//每到一个点把此点标记并且记录个数
for(int i=1;i<=n;i++)
{
if(flag[i]==0&&G[k][i]==1)
{
dfs(i);
}
}//搜索所有的情况 ,注意走不到的点 和 已经走过的点不可以作为终点
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
cin>>a>>b;
G[a][b]=1;
}//存矩阵,可走的为 1 ,不可走的为 0,注意是单向路;
for(int i=1;i<=n;i++)
{
memset(flag,0,sizeof(flag));//注意每次开始搜索的时候要初始化 flag 数组;
dfs(i);
}//搜索每个点,计算每个点作为起点对个数的贡献
cout<<cnt;
return 0;
}//此题不可用回溯算法,注意思考区别,回溯算法计数会重复
邻接矩阵的广度优先遍历
题目描述:一个图有n个节点编号从0至n−1和m条边编号从0至m−1。 输出从点x开始的广度优先遍历顺序。
输入:第一行为n,m,x。
接下来m行每行有一组u,v。表示点u可以到达点v,点v也可以到达点u。
输出:输出经过点的顺序。(输出字典序最小的答案)
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const ll maxx = 1e18;
const int N = 1e6+10;
const int p = 1e4;
const double eps = 1e-8;
int G[2001][2001];//邻接表
int n,m,x;
int a,b,k;
queue<int>qu;
bool flag[2001];//一个点可能被多次走过,标记一下
int main()
{
cin>>n>>m>>x;
for(int i=1;i<=m;i++)
{
cin>>a>>b;
G[a][b]=1;
G[b][a]=1;
}//存矩阵,注意是双向路
qu.push(x);
flag[x]=1;//用队列实现 bfs,存入起始点
while(!qu.empty())
{
int k=qu.front();
qu.pop();
cout<<k<<" ";//每次取出队首元素输出,让队首出队
for(int i=0;i<=n-1;i++)
{
if(G[k][i]==1&&!flag[i])
{
flag[i]=1;
qu.push(i);
}//找到这个点能走到的点 并且 没走过的点 ,标记一下放入队尾,从小到大搜索恰好实现了字典序最小
}
}
return 0;
}
注意队列用 front 不用 top