数据挖掘 — Learn To Rank(LTR)

本文介绍了文本特征向量提取方法,包括TF-IDF、CountVectorizer和Word2Vec,详细阐述了CBOW与Skip-Gram在Word2Vec中的应用。接着探讨了LTR中的Pointwise、Pairwise和Listwise算法,并列举了相关的评价标准如MAP和NDCG。
摘要由CSDN通过智能技术生成
1、文本特征向量提取方式
  • TF - IDF:单词在当前文档出现的频率 * log(总文档/单词在总文档中出现的文档数 ) 统计单词的TF-IDF,作为文本特征向量
  • CountVectorizer:只统计单词的词频,作为文本特征向量

上面两种方式参考这篇 https://blog.csdn.net/The_lastest/article/details/79093407

  • Word2Vec
    隐藏层求得onehot维度 * 隐藏层神经节点的个数,就是我们需要的wordvec,每一行就是对应单词的编码后的向量
    • CBOW:输入是上下文,输出是种子单词
    • Skip-Gram: 输入是种子单词,输出是上下文

word2vec 参考

2、LTR算法

(TODO 每个方式找个具体的算法看下怎么做的)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
learn to rankLTR)算法是一种用于排序任务的机器学习方法。它的目标是根据给定的查询和候选项对它们进行排序,以便在搜索引擎、推荐系统等领域中提供最相关的结果。 LTR算法的代码可以分为几个主要步骤: 1. 数据准备:首先,需要准备用于训练和评估的数据集。数据集通常包含一组查询、对应的候选项和相关性标签。查询和候选项可以使用文本表示,相关性标签可以用数值表示。 2. 特征提取:对于每个查询和候选项对,需要从中提取一些特征。特征可以包括文本相似度、关键词匹配度、位置信息等。根据具体问题和数据集的特点,可以选择不同的特征。 3. 特征工程:在特征提取之后,可能需要进行一些额外的特征处理工作,比如特征归一化、特征选择等。这个步骤有助于提高模型的性能和效果。 4. 模型构建:根据具体需求和问题,可以选择不同的学习模型构建LTR模型。常用的模型包括基于回归的模型(如线性回归、逻辑回归)、树模型(如GBDT、随机森林)以及神经网络模型(如深度学习模型)等。根据模型的类型和库的不同,可以使用相应的库和工具构建模型。 5. 模型训练:使用训练数据集对LTR模型进行训练。训练过程通常涉及模型参数的优化和调整,以最大化相关性标签和模型预测之间的一致性。 6. 模型评估:使用评估数据集对训练后的LTR模型进行性能评估。常用的评估指标包括排序指标(如NDCG)、相关性评估指标(如均方根误差)等。 7. 模型应用:训练好的LTR模型可以应用于实际场景中,进行排序任务。可以根据查询和候选项的特征,使用训练好的模型为它们进行排序,并输出最相关的结果。 总之,LTR算法的代码包括数据准备、特征提取、特征工程、模型构建、模型训练、模型评估和模型应用等步骤。具体的实现方式会因问题和需求的不同而有所差异。以上是LTR算法代码的基本描述,具体实现可以参考相关的机器学习库和文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值