机器学习
Anida_qin
算法工程师,关注机器学习,深度学习领域。CV&NLP&挖掘
展开
-
知识体系 - 机器学习梳理
下面是我收藏的一些不错的学习资料1、逻辑回归(Logistic Regression)逻辑回归计算过程的推导、并行化的实现:https://blog.csdn.net/ligang_csdn/article/details/53838743逻辑回归的常见面试点:https://www.cnblogs.com/ModifyRong/p/7739955.html达观数据对逻辑回归的一些总结:h...转载 2020-02-06 00:28:24 · 277 阅读 · 0 评论 -
Word Embedding系列
原创 2019-12-23 23:39:31 · 204 阅读 · 0 评论 -
PU-Learning
速读论文:Learning From Positive and Unlabeled Data: A Survey从方法上讲,主要有两种。two step: 先对数据用聚类或者任一相关算法分类(选出可信度高的neg案例),然后再放到任一分类网络里训练,然后再根据训练的结果分类未标记,再次训练,直到模型稳定或者loss较小。 基于可分性和连续性假设biased learning: 全部将未标...原创 2019-12-23 17:55:36 · 587 阅读 · 0 评论 -
【转】[Deep Learning] GELU (Gaussian Error Linerar Units)
转自https://www.cnblogs.com/shiyublog/p/11121839.html目录TL; NR正态分布1.1 定义1.2 概率密度函数1.3 累积分布函数1.4 标准正态分布误差函数2.1 定义2.2 误差函数与正态分布2.3 性质(部分)GELU3.1 Abstract3.2 Introduction3.3 GELU Formulatio...转载 2019-11-14 13:44:55 · 1396 阅读 · 0 评论 -
数据挖掘 — boosting算法
回归树https://blog.csdn.net/weixin_36586536/article/details/804684261、adaboost弱分类器训练过程https://www.cnblogs.com/chenpi/p/5128235.htmladaboost原理https://www.cnblogs.com/pinard/p/6133937.html?utm_source=...原创 2019-03-05 15:36:51 · 271 阅读 · 0 评论 -
【深度学习基础】Gated CNN 门控CNN 代码篇
转载自 https://blog.csdn.net/liuchonge/article/details/70254660import numpy as npimport tensorflow as tfclass GatedCNN(object): def __init__(self, conf): tf.reset_default_graph() ...转载 2019-06-17 15:50:13 · 2502 阅读 · 1 评论 -
【深度学习基础】Gated CNN 门控CNN原理篇
论文:Language Modeling with Gated Convolutional Networks思想:模拟lstm的是否遗忘门,或者说判断权重的思想。再做一个和CNN卷积一样参数的filter, 取值0-1,判断这个序列的特征哪些应该被关注,哪些应该被忽略。疑问:总感觉一个应该也可以学好,因为归根结底,就是两个filter相乘而已。所以效果好是因为好训练吗?Input sent...原创 2019-06-17 16:41:30 · 9163 阅读 · 2 评论 -
Loss合集
Contrastive Loss(Siamese Network)https://blog.csdn.net/qq_37053885/article/details/79325892原创 2019-07-08 15:47:26 · 191 阅读 · 0 评论 -
线性降维方法PCA和LDA
PCA分类的目标是,使得所有点的方差之和最大化,即分的越开。LDA分类的目标是,使得类别内的点距离越近越好(集中),类别间的点越远越好。一般做LDA之前需要做PCA,以去除冗余信息,并且使得某些矩阵变为非奇异,方便计算。PCAhttp://www.360doc.com/content/13/1124/02/9482_331688889.shtmlLDA...原创 2016-04-17 20:46:22 · 378 阅读 · 0 评论 -
李航机器学习第七章 — SVM
1、思想最大化最小间隔拉格朗日乘子法求解2、推导过程3、拓展知识点软间隔,原来是最小间隔必须大于1,软了就是相对宽松些,可以有个ϵ\epsilonϵ.核函数,橘黄色的部分,是特征向量内积,相当于把向量映射到一个上面去,增加分类的准确性。SVM多分类问题 https://www.cnblogs.com/CheeseZH/p/5265959.html一对一一对多层次分类...原创 2019-03-02 16:16:45 · 436 阅读 · 0 评论 -
神经网络训练loss不下降原因集合
train loss与test loss结果分析train loss 不断下降,test loss不断下降,说明网络仍在学习train loss 不断下降,test loss趋于不变,说明网络过拟合;train loss 不断下降,test loss趋于不变,说明网络过拟合;train loss 趋于不变,test loss不断下降,说明数据集100%有问题;trai...转载 2018-10-24 14:37:04 · 806 阅读 · 0 评论 -
机器学习—卡方检验
原文链接https://www.jianshu.com/p/807b2c2bfd9b本文相对原文有删减和增加一些自己的理解。其实卡方检验是英文Chi-Square Test 的谐音。在大数据运营场景中,通常用在某个变量(或特征)值是不是和应变量有显著关系。01 什么是卡方检验:卡方检验就是检验两个变量之间有没有关系。卡方检验可以检验男性或者女性对线上买生鲜食品有没有区别;不同城市级...转载 2019-01-31 17:49:39 · 2172 阅读 · 0 评论 -
李航统计学习第一章-概论
1、统计学习方法监督学习,非监督学习,半监督学习,强化学习等。2、监督学习输入X和输出Y具有联合分布概论的假设是监督学习关于数据的基本假设。输入空间特征空间假设空间 :监督学习的目的在于学习一个由输入到输出的映射,这一映射由模型来表示,模型属于由输入空间到输出空间的映射的集合,这个集合就是假设空间。3、统计学习三要素方法 = 模型 + 策略 + 算法模型:所要学习的条件概率...原创 2019-02-12 15:27:42 · 168 阅读 · 0 评论 -
李航统计学习第二章-感知机
1、感知机算法的原始形式将w,b作为求导的参数2、感知机的对偶形式由上面的分析可以看出,w是一系列实例的组合。因此衍生出对偶形式,即将实例前面的系数作为求导参数,迭代更新系数,最后组合成w和b。官方解释:将w,b表示为实例xi和标记yi的线性组合的形式没通过求解其系数而求得w和b。...原创 2019-02-12 16:55:36 · 211 阅读 · 0 评论 -
李航统计学习第三章-k近邻法
参考:https://www.cnblogs.com/ybjourney/p/4702562.html1、K-NN算法2、距离度量3、k值选择k值一般取一个比较小的数值,通常采用交叉验证法来选取最优的k值小k值整体模型变复杂,容易发生过拟合,学习的近似误差减小。大k值整体模型变简单,学习的近似误差增大。...原创 2019-02-12 17:19:23 · 326 阅读 · 0 评论 -
李航统计学习第四章-朴素贝叶斯法
文章目录1、先导知识2、朴素贝叶斯算法3、拉普拉斯平滑估计4、极大似然估计理解1、先导知识为什么朴素朴素贝叶斯法对条件概率分布作了条件独立性假设。参数估计和推导过程2、朴素贝叶斯算法朴素贝叶斯其实很简单,之前看了好几遍,但总是会忘记,感觉被深度学习荼毒太深。这样想,朴素贝叶斯算的也是有监督的东西,那么无非就是输入x,输出y。如果需要得到参数,那么就是根据输入x和对应的标签y,...原创 2019-02-13 14:34:25 · 403 阅读 · 0 评论 -
李航统计学习第五章-决策树
1、一些信息论概念参考 https://blog.csdn.net/ranghanqiao5058/article/details/78458815熵如果本来一件事情发生的概率是50%,那么如果我知道了这件事情,那么这个信息就是有价值的。条件熵互信息、条件熵、联合熵区别2、特征选择信息增益相当于信息论中的互信息,知道一个信息不确定性减少的程度的大小,信息增益越大,代表这...原创 2019-02-13 22:25:58 · 785 阅读 · 0 评论 -
数据挖掘 — Learn To Rank(LTR)
1、文本特征向量提取方式TF - IDF:单词在当前文档出现的频率 * log(总文档/单词在总文档中出现的文档数 ) 统计单词的TF-IDF,作为文本特征向量CountVectorizer:只统计单词的词频,作为文本特征向量上面两种方式参考这篇 https://blog.csdn.net/The_lastest/article/details/79093407Word2Vec隐藏...原创 2019-03-05 16:55:14 · 1975 阅读 · 0 评论 -
李航统计学习第六章-逻辑回归
文章目录1、逻辑回归2、交叉熵损失函数3、为什么用logistic函数?这里不以李航的为准了,个人觉得西瓜书讲的更好一点。1、逻辑回归g(z)=11+e−zg(z)=\frac{1}{1+e^{-z}}g(z)=1+e−z12、交叉熵损失函数交叉熵定义 https://blog.csdn.net/tsyccnh/article/details/79163834交叉熵loss计算参考...原创 2019-03-02 15:31:01 · 220 阅读 · 0 评论 -
A simple explanation of the Lasso and Least Angle Regression
原文来源http://statweb.stanford.edu/~tibs/lasso/simple.html Give a set of input measurements x1, x2 ...xp and an outcome measurement y, the lasso fits a linear modelyhat=b0 + b1*x1+ b2*x2 +转载 2016-04-18 09:25:15 · 301 阅读 · 0 评论