线性回归 岭回归 lasso 详细介绍

本文详细介绍了线性回归的几种形式,包括最小二乘模型、子空间约束最小二乘(岭回归)和l1约束最小二乘(Lasso)。重点讨论了岭回归和Lasso的模型、算法,如坐标下降法、二次规划和投影随机梯度下降,并解释了它们在处理高维数据和特征选择上的优势。
摘要由CSDN通过智能技术生成

线性回归

已知 n n 个样本 { ( x i , y i ) } i = 1 n ,其中 xiRd,yiR x i ∈ R d , y i ∈ R

回归问题学习实值函数 y=f(x) y = f ( x ) ,其中 f:RdR f : R d → R

最小二乘模型(Least Squares Regression)

模型

最小二乘模型的优化问题为:

θ^LS=argminθJLS(θ)(1) (1) θ ^ L S = argmin θ ⁡ J L S ( θ )

其中
JLS(θ)=12i=1n(yifθ(xi))2fθ(x)=i=1bθiϕi(x)=θTϕ(x) J L S ( θ ) = 1 2 ∑ i = 1 n ( y i − f θ ( x i ) ) 2 f θ ( x ) = ∑ i = 1 b θ i ϕ i ( x ) = θ T ϕ ( x )

ϕ:RdRb ϕ : R d → R b 为一个映射,可以是非线性,如 ϕ(x)=xTx ϕ ( x ) = x T x

用向量和矩阵可表示为:

JLS(θ)=12||yΦθ||22 J L S ( θ ) = 1 2 | | y − Φ θ | | 2 2

其中
y=(y1,,yn)TΦ=ϕ1(x1)ϕ1(xn)ϕb(x1)ϕb(xn) y = ( y 1 , … , y n ) T Φ = [ ϕ 1 ( x 1 ) ⋯ ϕ b ( x 1 ) ⋮ ⋮ ϕ 1 ( x n ) ⋯ ϕ b ( x n ) ]

ΦRn×b Φ ∈ R n × b 为设计矩阵(design matrix)

由于 JLS(θ) J L S ( θ ) 为凸函数,优化问题(1)有最优解,且最优值点满足:

θJLS=ΦT(yΦθ)=0 ∇ θ J L S = − Φ T ( y − Φ θ ) = 0

求解线性方程可得:
θ^LS=(ΦTΦ)+Φy θ ^ L S = ( Φ T Φ ) + Φ y

其中 (ΦTΦ)+ ( Φ T Φ ) + 表示 ΦTΦ Φ T Φ 的广义逆,当 Φ Φ 列满秩时, ΦTΦ Φ T Φ 为满秩矩阵,即 (ΦTΦ)+=(ΦTΦ)1 ( Φ T Φ ) + = ( Φ T Φ ) − 1 ,此时
θ^LS=(ΦTΦ)1Φy θ ^ L S = ( Φ T Φ ) − 1 Φ y

算法

  1. 利用公式 θ^LS=(ΦTΦ)+Φy θ ^ L S = ( Φ T Φ ) + Φ y 计算

  2. 梯度下降(收敛):

    迭代公式为 θθϵθJLS θ ⟵ θ − ϵ ∇ θ J L S ,其中 θJLS=ΦT(yΦθ) ∇ θ J L S = − Φ T ( y − Φ θ )

拓展

加权最小二乘(Weighted LS):

argminθ12i=1nwi(yifθ(xi))2 argmin θ ⁡ 1 2 ∑ i = 1 n w i ( y i − f θ ( x i ) ) 2

其中 wiR+,i=1,,n w i ∈ R + , i = 1 , … , n 为权重

用向量矩阵表示为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值