线性回归
已知 n n 个样本 ,其中 xi∈Rd,yi∈R x i ∈ R d , y i ∈ R
回归问题学习实值函数 y=f(x) y = f ( x ) ,其中 f:Rd→R f : R d → R
最小二乘模型(Least Squares Regression)
模型
最小二乘模型的优化问题为:
θ^LS=argminθJLS(θ)(1) (1) θ ^ L S = argmin θ J L S ( θ )
其中
JLS(θ)=12∑i=1n(yi−fθ(xi))2fθ(x)=∑i=1bθiϕi(x)=θTϕ(x) J L S ( θ ) = 1 2 ∑ i = 1 n ( y i − f θ ( x i ) ) 2 f θ ( x ) = ∑ i = 1 b θ i ϕ i ( x ) = θ T ϕ ( x )
ϕ:Rd→Rb ϕ : R d → R b 为一个映射,可以是非线性,如 ϕ(x)=xTx ϕ ( x ) = x T x
用向量和矩阵可表示为:
JLS(θ)=12||y−Φθ||22 J L S ( θ ) = 1 2 | | y − Φ θ | | 2 2
其中
y=(y1,…,yn)TΦ=⎡⎣⎢⎢ϕ1(x1)⋮ϕ1(xn)⋯⋯ϕb(x1)⋮ϕb(xn)⎤⎦⎥⎥ y = ( y 1 , … , y n ) T Φ = [ ϕ 1 ( x 1 ) ⋯ ϕ b ( x 1 ) ⋮ ⋮ ϕ 1 ( x n ) ⋯ ϕ b ( x n ) ]
Φ∈Rn×b Φ ∈ R n × b 为设计矩阵(design matrix)
由于 JLS(θ) J L S ( θ ) 为凸函数,优化问题(1)有最优解,且最优值点满足:
∇θJLS=−ΦT(y−Φθ)=0 ∇ θ J L S = − Φ T ( y − Φ θ ) = 0
求解线性方程可得:
θ^LS=(ΦTΦ)+Φy θ ^ L S = ( Φ T Φ ) + Φ y
其中 (ΦTΦ)+ ( Φ T Φ ) + 表示 ΦTΦ Φ T Φ 的广义逆,当 Φ Φ 列满秩时, ΦTΦ Φ T Φ 为满秩矩阵,即 (ΦTΦ)+=(ΦTΦ)−1 ( Φ T Φ ) + = ( Φ T Φ ) − 1 ,此时
θ^LS=(ΦTΦ)−1Φy θ ^ L S = ( Φ T Φ ) − 1 Φ y
算法
利用公式 θ^LS=(ΦTΦ)+Φy θ ^ L S = ( Φ T Φ ) + Φ y 计算
梯度下降(收敛):
迭代公式为 θ⟵θ−ϵ∇θJLS θ ⟵ θ − ϵ ∇ θ J L S ,其中 ∇θJLS=−ΦT(y−Φθ) ∇ θ J L S = − Φ T ( y − Φ θ )
拓展
加权最小二乘(Weighted LS):
argminθ12∑i=1nwi(yi−fθ(xi))2 argmin θ 1 2 ∑ i = 1 n w i ( y i − f θ ( x i ) ) 2
其中 wi∈R+,i=1,…,n w i ∈ R + , i = 1 , … , n 为权重
用向量矩阵表示为: