可视化 Visualisation 总结 (R/python)

本文总结了数据可视化中常见的图表类型,包括bar charts、pie charts、scatterplots、histograms、box plots和line plots,并探讨了它们在数据分析中的作用。通过R和Python分别实现这些图表,利用mtcars数据集展示了如何在两种语言中进行可视化。
摘要由CSDN通过智能技术生成

写在前面

总结的图的种类包括:

bar charts, pie charts, scatterplots, histograms ,box plots,line plots ,maps

“R is very powerful in data analysis and visualization” 

整个 master 的学习,在数据分析时基于用的R和python,这里小小的总结了一些 可视化,给出每部分的例子,部分词语方便起见用的英文.

Visualisation

  • bar charts to display frequencies for qualitative (定性的)variables ,一般用来辅助理解数据。
  • pie charts to display data where proportions are important.    一般用来辅助理解数据。
  • scatterplots n. 散点图 to display pairs of values of two quantitative variables 显示两个定量变量的值对 (比如车重和油耗的散点图,可以直观的看出正负相关关系)  一般用来辅助理解 两个变量之间的线性关系,
  • histograms ( /ˈhɪstəɡræm/  n. [统计] 直方图;柱状图 (列出了所有场景对于全部场景的占比))display the distribution of a quantitative variable using relative frequencies.    一般用来辅助理解变量的分布情况,比如正太分布,左偏右偏等,
  • box plots   n. 箱形图;盒形图 带中值的柱图,以及上下浮动的区间 to display the median and variability between several sets of observations. 显示几组观测值之间的中位数和变化性。  可以帮我们观测离群值
  • line plots 曲线图,类似于股票价格波动的曲线图 to show values of one or more variables measured at different times, connected by a curve.  曲线可以指定,比如直线/光滑曲线/按模型画线等 ,为我们回归模型的选择提供参考
  • maps to display information and variation (/ˌveəriˈeɪʃn/ )over space.  这个不太好展示,需要加载相关的地图文件 ,一般是 空间流行病学 之类的空间信息展示,我确实搞过,不过有点复杂,这里就不给例子了。

R实现上图 

数据集用的  mtcars , R基础包中就有

require(ggplot2)
require(raster)
data(mtcars)

# Bar chart of cars by number of cylinders using ggplot
ggplot(mtcars, aes(x = factor(cyl))) + # ggplot with t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clark Kent 2000

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值