写在前面
总结的图的种类包括:
bar charts, pie charts, scatterplots, histograms ,box plots,line plots ,maps
“R is very powerful in data analysis and visualization”
整个 master 的学习,在数据分析时基于用的R和python,这里小小的总结了一些 可视化,给出每部分的例子,部分词语方便起见用的英文.
Visualisation
- bar charts to display frequencies for qualitative (定性的)variables ,一般用来辅助理解数据。
- pie charts to display data where proportions are important. 一般用来辅助理解数据。
- scatterplots n. 散点图 to display pairs of values of two quantitative variables 显示两个定量变量的值对 (比如车重和油耗的散点图,可以直观的看出正负相关关系) 一般用来辅助理解 两个变量之间的线性关系,
- histograms ( /ˈhɪstəɡræm/ n. [统计] 直方图;柱状图 (列出了所有场景对于全部场景的占比))display the distribution of a quantitative variable using relative frequencies. 一般用来辅助理解变量的分布情况,比如正太分布,左偏右偏等,
- box plots n. 箱形图;盒形图 带中值的柱图,以及上下浮动的区间 to display the median and variability between several sets of observations. 显示几组观测值之间的中位数和变化性。 可以帮我们观测离群值
- line plots 曲线图,类似于股票价格波动的曲线图 to show values of one or more variables measured at different times, connected by a curve. 曲线可以指定,比如直线/光滑曲线/按模型画线等 ,为我们回归模型的选择提供参考
- maps to display information and variation (/ˌveəriˈeɪʃn/ )over space. 这个不太好展示,需要加载相关的地图文件 ,一般是 空间流行病学 之类的空间信息展示,我确实搞过,不过有点复杂,这里就不给例子了。
R实现上图
数据集用的 mtcars , R基础包中就有
require(ggplot2)
require(raster)
data(mtcars)
# Bar chart of cars by number of cylinders using ggplot
ggplot(mtcars, aes(x = factor(cyl))) + # ggplot with t