Bayesian framework 贝叶斯框架 (R)

本文深入浅出地介绍了贝叶斯定理、贝叶斯推理和贝叶斯回归模型,并结合R语言进行实战演示。通过马尔可夫链蒙特卡洛(MCMC)方法求解后验分布,揭示了贝叶斯方法在统计分析中的独特之处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

本文介绍了 Bayes' theorem(贝叶斯定理),Bayesian inference(贝叶斯推理),Bayesian regression Model (贝叶斯回归模型) 等。

贝叶斯定理大家都耳熟能详,高中数学甚至都有涉及,即:用先验概率和条件概率求出另外的条件概率。

但贝叶斯推理和回归模型我认为是一个比较trick 的内容。

用一张图解释本文的内容:

一些术语

prior :   1 happening or existing before sth else or before a particular time  ,  2 already existing and therefore more important;

likelihood : 参考我之前的博客;

posterior : located behind sth or at the back of sth

Bayes' theorem 贝叶斯定理

简单来说就是用先验概率和条件概率求出另外的条件概率。

Bayesian inference

将贝叶斯定理应用在统计分析中, 即模型参数是未知量, 而且它们的先验分布需要被(手动/经验地)指定 — this is Bayesian inference.

(在贝叶斯框架中,我们讨论的是模型参数的概率分布 ,注意,在那些常见的框架中,如以MLE为基础的GLM,模型参数是 fixed non-random quantities ,数据才是遵循某种概率分布 ,这是两者显著的不同。

一个粗鲁的解释就是:我们有一堆观测数据,我们揣测这个数据可能符合某种模型分布,如正态。泊松等,然后模型的参数也被我们 揣测地 定了下来, 然后我们用观测数据和这个我们揣测的模型 去收敛训练, 最后我们得到了 posterior ,这个 posterior,是 我们根据观测数据收敛训练,得到的模型的参数 ,注意我们得到的是参数的分布,而不是点估计。

 

更多的可以参考这里。)

假设:

1 观测量,即数据 ,是 x;

2 位置量是θ,这个 θ 可以代表模型参数,数据中地缺失值,误测值等;

基于我们上面的假设,

首先我们提出 likelihood :p(x | θ)

然后我们从贝叶斯定理的角度观察 : θ 是未知的,所以它需要有(被手动/经验地指定)一个概率分布,用来表示这个 不确定性; 是已知的,所以它是条件(condition on it),我们得到 posterior distribution

所以总的来说,我们首先指定了一个  prior distribution p(θ), 表达了我们在看到数据之前对θ不确定性的预估. The posterior distribution p(θ | x), 表达了我们在看到数据之后对θ不确定性的预估。

很明显:1 我们的 posterior 是prior 和 data (likelihood) 的居中选择,2 如果我们的数据越多,我们的 data (likelihood )的 影响力就越大,prior 影响力就越小 (比如你认为 它们都是好的,但搞了一堆观测数据发现它们基本都是坏的,那推论 必然更容易是 它们是坏的)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clark Kent 2000

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值