边缘计算和大型语言模型 (LLM):有什么联系?(翻译文章)

声明:这篇文章为翻译文章,如有翻译不准之处请见谅。原文请参照:Edge Computing and Large Language Models (LLMs): What’s the Connection? - DEV CommunityEdge computing and LLMs have grown so much in recent years. Both fields are conventionally different... Tagged with llm, machinelearning, cloudcomputing, ai.icon-default.png?t=O83Ahttps://dev.to/hakeem/edge-computing-and-large-language-models-llms-whats-the-connection-34id

近年来,边缘计算和 LLM 发展迅速。这两个领域传统上是不同的,但随着它们的发展,它们的融合是不可避免的。将边缘计算功能与大规模 AI 模型(尤其是 GPT-4 或 BERT 等 LLM)相结合的潜力为各个行业带来了变革性机遇。
本文探讨了边缘计算和 LLM 之间错综复杂的联系,重点介绍了它们各自的特点、它们交集的潜力以及在边缘实施 AI 模型所涉及的挑战。对于技术人员和 AI 爱好者来说,了解这种联系可以为开发更高效、可扩展和响应更快的 AI 系统开辟新的可能性。

边缘计算:概述和重要性

边缘计算是指在靠近数据源或网络“边缘”的地方处理数据,而不是依赖于集中式云基础设施。这种本地化处理具有多种优势,尤其是在需要实时数据分析和决策的应用中。通过将计算任务从集中式服务器分配到更靠近用户或设备的位置,边缘计算可以显著减少延迟、提高带宽利用率、增强安全性并降低成本。

边缘计算的主要优势包括:

  1. 降低延迟:通过在本地处理数据,响应时间更快,这对于自动驾驶、工业自动化和物联网设备等实时应用至关重要。
  2. 提高带宽效率:不是将所有数据发送到云端进行处理,而是只传输相关或汇总的数据,从而减少带宽使用量。
  3. 增强的安全性和隐私性:敏感数据可以在本地处理,最大限度地降低传输过程中数据泄露或暴露于外部威胁的风险。
  4. 可靠性:边缘计算可以在网络连接有限或不可靠的环境中运行,因为数据可以离线处理或通过间歇性云访问进行处理。鉴于物联网设备的日益普及以及对低延迟应用(如 AR/VR、游戏和实时分析)的需求,边缘计算变得比以往任何时候都更加重要。

大型语言模型 (LLM):概述和功能

大型语言模型 (LLM) 是人工智能 (AI) 的一个子集,它彻底改变了自然语言处理 (NLP)。这些模型通常基于 Transformer 等深度学习架构,在庞大的数据集上进行训练,使其能够生成类似人类的文本、理解复杂的语言结构,甚至进行逻辑推理。

一些著名的法学硕士包括:

  1. GPT(生成式预训练 Transformer):由 OpenAI 开发的 GPT-3 和 GPT-4 是最大的语言模型之一,能够执行文本生成、翻译、摘要甚至编码等任务。
  2. BERT(来自 Transformers 的双向编码器表示):BERT 由 Google 开发,是一种预先训练的 Transformer 模型,在情感分析、问答和文本分类等任务中实现了高精度。
  3. T5(文本到文本转换转换器):同样由谷歌开发,T5 将 NLP 任务重新定义为文本到文本的格式,使其能够灵活地用于各种语言理解任务。

LLM 的能力包括:

  • 语境理解:LLM 理解语言语境并能提供考虑到细微差别的回应,使其在人机交互中非常有效。
  • 泛化:这些模型只需进行最少的微调就能推广到不同的任务。
  • 可扩展性:LLM 可以在规模上进行扩展,随着更多参数的添加,其处理更复杂任务的能力将得到提高。
  • 迁移学习:预先训练的 LLM 可以使用较小的数据集针对特定任务进行微调,使其适用于不同的应用程序。然而,由于 LLM 的参数规模较大(例如,GPT-4 有超过 1750 亿个参数),因此通常需要大量计算资源。这传统上限制了它们的部署在强大的云环境中。

边缘计算与法学硕士的融合

边缘计算与 LLM 之间的联系在于,在需要实时、低延迟处理的环境中部署复杂 AI 模型的需求日益增长。随着 AI 应用扩展到智能手机、物联网设备、自动驾驶汽车和工业机器人等边缘设备,挑战在于如何让资源密集型的 LLM 在边缘高效工作。
有几个因素推动了边缘计算与 LLM 的融合:

1.实时AI处理需求

边缘计算解决了在设备和云之间来回发送数据时出现的延迟问题。在实时决策至关重要的应用中(例如自动驾驶、无人机导航或医疗诊断),延迟可能会影响生死。LLM 越来越多地用于处理复杂的语言和感知任务(例如语音命令、图像描述、异常检测)。通过将这些模型部署到更靠近数据源的位置,边缘计算可以实现更快的响应和实时洞察。

2. 资源受限的环境

虽然 LLM 传统上部署在具有大量计算资源的云环境中,但将 AI 部署到边缘设备需要模型能够在有限的内存、处理能力和能耗限制内工作。模型量化、修剪和提炼等技术可用于在不牺牲准确性的情况下减小 LLM 的大小,从而实现在智能手机或嵌入式系统等边缘设备上的部署。

3. 数据隐私和安全

许多边缘设备处理敏感数据,例如医疗设备或金融系统。将这些数据传输到集中式云服务器可能会带来隐私风险。通过在边缘设备上本地部署 LLM,组织可以确保敏感数据永远不会离开设备,从而增强隐私并遵守 GDPR 或 HIPAA 等法规。

4.带宽优化

边缘计算允许在本地处理和过滤数据,仅将最相关的见解发送到云端。这对于处理大量数据的 LLM 尤其有用,例如在智能城市中,传感器和摄像头每天会产生数 TB 的数据。在边缘部署 LLM 可让这些系统执行实时分析并仅将必要信息传输到中央服务器,从而减轻网络基础设施的负载。

5. 离线AI应用

许多环境(例如偏远的工业场所或发展中地区)的互联网连接不可靠或时断时续。通过在边缘部署 LLM,这些位置仍然可以从 AI 驱动的洞察和自动化中受益,而无需持续的云访问。这对于在无法保证实时、可靠互联网访问的环境中运行的无人机、卫星和自动驾驶汽车等自主系统尤其重要。

在边缘部署 LLM 的挑战

虽然边缘计算和 LLM 的融合提供了许多好处,但要使这种集成变得可行,必须解决几个挑战:

1. 计算和内存限制

边缘设备的计算能力和内存通常有限,这对部署 LLM 提出了重大挑战。GPT-4 等模型计算量大,通常需要高端 GPU 或 TPU 进行推理。人们正在探索模型压缩(剪枝和量化)、模型蒸馏和硬件加速(使用 NPU 或 TPU 等专用芯片)等技术来缓解这一挑战,但在边缘实现大型模型的性能仍然是一项艰巨的任务。

  • 模型压缩:通过量化和剪枝等技术减少 LLM 的大小有助于在边缘设备上部署模型。然而,随着模型尺寸缩小,保持模型的准确性和泛化能力变得越来越困难。
  • 模型提炼:这涉及使用更大、更强大的模型(“老师”)的知识来训练较小的模型(“学生”)。虽然这可以产生更小、更高效的模型,但提炼过程可能很复杂,可能无法捕捉原始模型的所有细微差别。

2. 能源效率

在边缘设备上运行 LLM 可能会耗能,尤其是在电池寿命有限的设备上,例如智能手机或可穿戴设备。人们正在研究诸如自适应计算之类的技术,这种技术允许模型根据任务复杂性动态调整其计算,以降低边缘 LLM 的能耗。然而,平衡能源效率和模型性能是一项持续的挑战。

3. 延迟

虽然边缘计算可以降低与云计算相关的延迟,但大型模型中的内部延迟仍然是一个挑战。在边缘设备上对大型 LLM 进行推理可能会带来延迟,尤其是当模型未针对硬件进行优化时。模型分区等技术(其中模型的一部分在设备上运行,一部分在云端运行)可以在一定程度上缓解这种情况,但需要精心设计以避免引入新的瓶颈。

4. 安全和隐私的权衡

虽然在边缘部署 LLM 可以通过将数据保留在本地来提高隐私性,但它也带来了新的安全问题。边缘设备通常比云服务器更容易受到物理威胁或网络攻击。确保部署在边缘的 LLM 的安全性需要强大的加密、安全的启动机制和频繁的固件更新,这在分布式环境中可能具有挑战性。

5. 模型更新与维护

LLM 通常需要定期更新以提高准确性、解决偏见或整合新知识。在基于云的环境中,更新模型相对容易,因为系统的集中式特性允许轻松分发更新。然而,在边缘设备上更新模型更为复杂,特别是当设备分布在不同位置且可能没有持续连接时。无线 (OTA) 更新可以提供帮助,但大规模管理这种更新具有挑战性。

边缘法学硕士的技术方法

为了应对上述挑战,正在开发几种技术方法,使 LLM 更适合边缘部署:

1.模型量化

量化涉及将模型的权重从浮点精度转换为低位格式(例如 8 位或 16 位整数),从而显著降低计算和内存需求。该技术可缩短推理时间并降低边缘设备的能耗。量化感知训练 (QAT) 是一种通过在训练过程中考虑降低的精度来提高量化模型准确性的技术。

2.模型剪枝

修剪可从模型中删除不必要或多余的参数,从而减小模型的大小和复杂性。通过消除对模型输出影响最小的神经元或连接,修剪可使 LLM 更高效且更适合边缘部署。结构修剪技术专注于删除整个层或神经元,从而更容易在具有特定约束的硬件上部署模型。

3. 边缘专用硬件

通过专门为 AI 任务设计的神经处理单元 (NPU)、张量处理单元 (TPU) 和图形处理单元 (GPU) 等专用芯片进行硬件加速在边缘设备中变得越来越普遍。这些芯片针对运行深度学习模型(包括 LLM)进行了优化,与通用 CPU 相比,可以显著提高速度和效率。

4. 联邦学习

在联邦学习中,模型使用本地数据在边缘设备上进行本地训练,并且只有模型更新才会发送回中央服务器。这样就可以训练 LLM,而无需将大量数据传输到云端,从而保护隐私并减少带宽使用。然而,联邦学习也带来了与模型同步、通信开销以及确保模型在分布式设备之间收敛相关的挑战。

5. 模型蒸馏

模型蒸馏允许较小的轻量级模型从较大的预训练模型中学习。这种技术对于边缘部署特别有用,因为较小的模型可以在资源受限的设备上高效运行,同时仍能从较大模型的知识中受益。

法学硕士 (LLM) 的边缘应用

边缘计算和 LLM 的融合使各个行业的众多应用成为可能。一些值得注意的用例包括:

1. 自动驾驶汽车

自动驾驶汽车依靠实时处理传感器数据来做出决策。在边缘部署 LLM 可使汽车理解复杂指令、解释传感器数据并快速做出决策,而无需依赖云连接。

2. 医疗保健和诊断

医疗保健领域的边缘设备(例如可穿戴设备和医学成像系统)可以使用 LLM 进行实时诊断和分析。例如,LLM 可以协助分析患者数据或根据医疗记录提供诊断建议,同时确保敏感的患者数据保留在设备上。

3.智能家居和物联网设备

智能设备(例如家庭助理、安全摄像头和家用电器)可以借助 LLM 来理解语音命令、检测异常活动或提供个性化建议。在边缘部署这些模型可确保快速响应,并通过将用户数据保留在本地来增强隐私。

4. 零售和客户体验

零售环境中的边缘设备可以使用 LLM 提供个性化的购物体验,例如用于店内指导或自动产品推荐的虚拟助手。这些系统甚至可以在互联网连接有限的环境中运行。

结论

边缘计算和大型语言模型 (LLM) 的交汇代表了 AI 开发的新前沿。随着边缘设备变得越来越强大,优化 LLM 的技术也不断进步,在边缘部署这些模型将为实时 AI 应用带来新的可能性。然而,必须解决与计算效率、安全性和模型管理相关的挑战,才能充分发挥这种融合的潜力。
通过将边缘计算的低延迟、隐私保护优势与 LLM 强大的语言处理能力相结合,我们可以期待各个行业出现重大创新。硬件开发人员、AI 研究人员和行业从业者之间的合作将是克服这些挑战和突破边缘 AI 可能性界限的关键。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值