面临多目标回归问题怎么办?
在金融、医疗或者环境科学等多个领域,经常会遇到一个问题:如何同时预测多个相关的目标变量?例如,在股票市场里,可能需要同时预测多家公司的股价。或者在医疗领域,可能需要根据患者的多项身体指标来预测多种疾病的风险。
假设现在要根据患者的年龄、体重、血压和胆固醇水平来预测两种疾病(如心脏病和糖尿病)的风险级别。下面是一份模拟的数据:
年龄 | 体重 | 血压 | 胆固醇 | 心脏病风险 | 糖尿病风险 |
---|---|---|---|---|---|
45 | 75 | 120 | 200 | 0.5 | 0.4 |
50 | 80 | 130 | 220 | 0.7 | 0.6 |
55 | 85 | 125 | 210 | 0.6 | 0.5 |
60 | 90 | 135 | 230 | 0.8 | 0.7 |
… | … | … | … | … | … |
为解决这个问题,可以使用MultiTaskLassoCV
算法。这个算法不仅可以进行多目标的预测,还能自动选择最优的模型参数。