【Python机器学习】零基础掌握ARDRegression贝叶斯回归

本文介绍ARD回归算法,一种用于高精度预测并自动选择关键特征的贝叶斯线性回归方法。通过实例,展示了如何使用sklearn库进行房价、丝绸之路繁荣指数和医疗机构效率的预测,揭示了ARD回归在特征选择和复杂问题解决上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何准确预测房价?

房地产市场波动不断,房价预测成了许多人关注的热点。传统的房价预测方法往往依赖于经验或者简单的统计方法,但这样做往往准确度不高。有没有一种方法,既能准确预测房价,又能自动筛选出影响房价最关键的因素?

答案是有的,这就是本文要介绍的ARD回归算法(Automatic Relevance Determination Regression)。该算法不仅能进行高精度的预测,还能自动选择哪些因素(例如地段、面积、楼层等)是影响预测最重要的。

假设一个房地产公司想要预测不同城市、不同类型的房子的售价。通常影响房价的因素有很多,如下:

地段 面积(平方米) 楼层 房龄
CBD 80 10 5
郊区 120 2 1
老城 70 8 10

基于这些数据,使用ARD回归算法可以更准确地进行房价预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr数据杨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值